Đề thi thử đại học môn Toán - Đề 56 đến 75

 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 56)

I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)

Câu 1: Cho hàm số y=2x+1/x-2

 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.

 2) Viết phương trình tiếp tuyến của đồ thị (C),biết hệ số góc của tiếp tuyến bằng -5.

 

doc95 trang | Chia sẻ: tuananh27 | Lượt xem: 532 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Đề thi thử đại học môn Toán - Đề 56 đến 75, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
uyến của (C) tại A và B song song với nhau là 
II-(1) Điều kiện: 
Từ (1) ta có: 
Giao với điều kiện, ta được họ nghiệm của phương trình đã cho là 
 II-(2) Điều kiện: ; Phương trình đã cho tương đương:
Giao với điều kiện, ta được nghiệm của phương trình đã cho là 
 III-(1) 
IV- Gọi M, N theo thứ tự là trung điểm của AB và CD. Khi đó và . 
Giả sử I là giao điểm của MN và OO’.
Đặt R = OA và h = OO’. Khi đó:
 vuông cân tại O nên: 
Ta có: 
 và 
 V- Phương trình (1)
Điều kiện : 
Nếu thỏa mãn (1) thì 1 – x cũng thỏa mãn (1) nên để (1) có nghiệm duy nhất thì cần có điều kiện . Thay vào (1) ta được:
*Với m = 0; (1) trở thành:Phương trình có nghiệm duy nhất.
* Với m = -1; (1) trở thành
	+ Với 	+ Với 
Trường hợp này, (1) cũng có nghiệm duy nhất.
* Với m = 1 thì (1) trở thành: 
Ta thấy phương trình (1) có 2 nghiệm nên trong trường hợp này (1) không có nghiệm duy nhất.
Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1.
 CâuVIa: 
1/ Đường tròn (C) có tâm I(2;1) và bán kính .
Gọi A, B là hai tiếp điểm của (C) với hai tiếp của (C) kẻ từ M. Nếu hai tiếp tuyến này lập với nhau một góc 600 thì IAM là nửa tam giác đều suy ra .
Như thế điểm M nằm trên đường tròn (T) có phương trình: .
Mặt khác, điểm M nằm trên đường thẳng , nên tọa độ của M nghiệm đúng hệ phương trình: 
Khử x giữa (1) và (2) ta được:
Vậy có hai điểm thỏa mãn đề bài là: hoặc 
 2/ .Ta tính được . 
 Vậy tứ diện ABCD có các cặp cạnh đối đôi một bằng nhau. Từ đó ABCD là một tứ diện gần đều. Do đó tâm của mặt cầu ngoại tiếp của tứ diện là trọng tâm G của tứ diện này.
Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm là , bán kính là .
CâuVIIa: Số cách chọn 9 viên bi tùy ý là : 
Những trường hợp không có đủ ba viên bi khác màu là:
+ Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng chỉ là 8.
+ Không có bi xanh: có cách.
+ Không có bi vàng: có cách
 Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì có cách chọn 9 viên bi đỏ được tính hai lần.
Vậy số cách chọn 9 viên bi có đủ cả ba màu là: cách
 Câu VIb
 1/- I có hoành độ và 
Vai trò A, B, C, D là như nhau nên trung điểm M của cạnh AD là giao điểm của (d) và Ox, suy ra M(3;0)
, suy ra phương trình AD: .
Lại có MA = MD = .
Vậy tọa độ A, D là nghiệm của hệ phương trình:
 hoặc .Vậy A(2;1), D(4;-1), 
 là trung điểm của AC, suy ra:
Tương tự I cũng là trung điểm BD nên ta có: B(5;4).
Vậy tọa độ các đỉnh của hình chữ nhật là (2;1), (5;4), (7;2), (4;-1).
 2/- Mặt cầu (S) tâm I(2;-1;3) và có bán kính R = 3.
Khoảng cách từ I đến mặt phẳng (P):
.
Do đó (P) và (S) không có điểm chung.Do vậy, min MN = d –R = 5 -3 = 2.
Trong trường hợp này, M ở vị trí M0 và N ở vị trí N0. Dễ thấy N0 là hình chiếu vuông góc của I trên mặt phẳng (P) và M0 là giao điểm của đoạn thẳng IN0 với mặt cầu (S).
Gọi là đường thẳng đi qua điểm I và vuông góc với (P), thì N0 là giao điểm của và (P). 
Đường thẳng có vectơ chỉ phương là và qua I nên có phương trình là .
Tọa độ của N0 ứng với t nghiệm đúng phương trình:
Suy ra .Ta có Suy ra M0(0;-3;4)
 VII b:
 Áp dụng bất đẳng thức 
Ta có: 
Ta lại có:
Tương tự: 
Từ đó suy ra 
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Đáp án(ĐỀ 59) 
Câu
Ý
Nội dung
Điểm
2
1,00
+ Khi m = 0 , nên hàm số không có cực trị.
0,25
+ Khi Hàm số không có cực trị khi và chỉ khi không có nghiệm hoặc có nghiệm kép
0,50
0,25
1
1,00
 (1) Điều kiện: 
0,25
0,25
Vậy phương trình đã cho vô nghiệm.
0,50
2
1,00
 (2)
Điều kiện: 
0,25
0,25
+ Với ta có phương trình ; 
0,25
+ Với ta có phương trình (4); 
Vậy phương trình đã cho có hai nghiệm là hoặc 
0,25
III
1,00
Đặt 
+ Đổi cận:
0,50
0,50
IV
1,00
Gọi E là trung điểm của AB, ta có: , suy ra . 
Dựng , vậy OH là khoảng cách từ O đến (SAB), theo giả thiết thì OH = 1.
Tam giác SOE vuông tại O, OH là đường cao, ta có:
0,25
0,25
Thể tích hình nón đã cho: 
0,25
Diện tích xung quanh của hình nón đã cho:
0,25
V
1,00
Hệ bất phương trình 
. Hệ đã cho có nghiệm khi và chỉ khi tồn tại thỏa mãn (2).
0,25
Gọi 
0,25
Hệ đã cho có nghiệm 
; 
Vì nên chỉ nhận 
0,25
Ta có: 
Vì f liên tục và có đạo hàm trên [1;6] nên 
Do đó 
0,25
VIa
2,00
1
1,00
Tọa độ của A nghiệm đúng hệ phương trình:
0,25
Tọa độ của B nghiệm đúng hệ phương trình 
0,25
Đường thẳng AC đi qua điểm A(-2;4) nên phương trình có dạng:
Gọi 
Từ giả thiết suy ra . Do đó 
+ a = 0 . Do đó 
+ 3a – 4b = 0: Có thể cho a = 4 thì b = 3. Suy ra (trùng với ).
Do vậy, phương trình của đường thẳng AC là y - 4 = 0.
0,25
Tọa độ của C nghiệm đúng hệ phương trình:
0,25
2
1,00
Gọi I(a;b;c) là tâm và R là bán kính của mặt cầu (S). Từ giả thiết ta có:
0,25
Ta có: 
Từ (1) và (3) suy ra: 
0,25
Từ (2) và (3) suy ra: 
Thế (4) vào (5) và thu gọn ta được: 
Như vậy hoặc .Suy ra: I(2;2;1) và R = 3 hoặc và R = 3.
0,25
Vậy có hai mặt cầu thỏa mãn yêu cầu với phương trình lần lượt là:
 và 
0,25
VIIa
1,00
Điều kiện: 
Hệ điều kiện ban đầu tương đương: 
0,50
0,50
VIb
2,00
1
1,00
Tọa độ giao điểm A, B là nghiệm của hệ phương trình
0,50
Vì A có hoành độ dương nên ta được A(2;0), B(-3;-1).
Vì nên AC là đường kính đường tròn, tức là điểm C đối xứng với điểm A qua tâm I của đường tròn. Tâm I(-1;2), suy ra C(-4;4).
0,50
2
1,00
Phương trình tham số của d1 là: . M thuộc d1 nên tọa độ của M .
Theo đề: 
0,25
+ Với t1 = 1 ta được ; 
+ Với t2 = 0 ta được 
0,25
+ Ứng với M1, điểm N1 cần tìm phải là giao của d2 với mp qua M1 và // mp (P), gọi mp này là (Q1). PT (Q1) là: .
Phương trình tham số của d2 là:  (2)
Thay (2) vào (1), ta được: -12t – 12 = 0 t = -1. Điểm N1 cần tìm là N1(-1;-4;0).
0,25
+ Ứng với M2, tương tự tìm được N2(5;0;-5).
0,25
VIIb
1,00
Điều kiện 
; 
0,25
Ta có: 
0,25
Khi đó: 
0,50
HƯỚNG DẪN GIẢI (đề 60)
Bài 1:
2) (1)
Đạo hàm 
°	
°	Hàm số có 2 cực tiểu 	Û y có 3 cực trị Û y/ = 0 có 3 nghiệm phân biệt 
	Û (2) có 2 nghiệm phân biệt khác 1 
Giả sử: Với , thì y/ = 0 có 3 nghiệm phân biệt 
Bảng biến thiên:
x
-¥
x1
x2
x3
+¥
y/
-
0
+
0
-
0
+
y
+¥
CT
CĐ
CT
+¥
°	Từ bảng biến thiên ta thấy hàm số có 2 cực tiểu.
Kết luận: Vậy, hàm số có 2 cực tiểu khi 
Bài 2: 
1). Ta có: cos3xcos3x – sin3xsin3x = Û cos3x(cos3x + 3cosx) – sin3x(3sinx – sin3x) = 
Û Û .
2) Giải phương trình : 2x +1 +x. (a)
* Đặt: 
°	Ta có: 
Vì u > 0, v > 0, nên (c) vô nghiệm. 	
Do đó: 
Kết luận, phương trình có nghiệm duy nhất: x = . 
Bài 3: 
1) + Ta có . Do đó mặt phẳng (P) chứa AB và song song CD có một VTPT và A(-1; -1; 0) thuộc (P) có phương trình: x + y – z + 2 = 0.(P)
Thử tọa độ C(2; -2; 1) vào phương trình (P) Þ C không thuộc (P), do đó (P) // CD.
 + 
2) Theo giả thiết ta có M(m; 0; 0) ÎOx , N(0; n; 0) ÎOy , P(0; 0; p) Î Oz.
	Ta có : .
Mặt khác: 
 Phương trình mặt phẳng () theo đoạn chắn: . Vì D Î() nên: .
D là trực tâm của DMNP Û . Ta có hệ: .
Kết luận, phương trình của mặt phẳng (): .
Bài 4: Tính tích phân . Đặt 
 	I = .
Bài 5: Giải phương trình (*)
Ta có: (*) Û 
Từ (2) Þ .
Khi , thay vào (1), ta được: 2x = 0 (VN)
	Khi , thay vào (1), ta được: 2x = 2 Û x = 1. 
Thay x = 1 vào (1) Þ sin(y +1) = -1 Û .
Kết luận: Phương trình có nghiệm: .
 Bài 6: Giải bất phương trình: .	Đặt , t > 0.
Bất phương trình trở thành: t2 – 10t + 9 ³ 0 Û ( t £ 1 hoặc t ³ 9)
	Khi t £ 1 Þ .(i)
	Khi t ³ 9 Þ (2i)
Kết hợp (i) và (2i) ta có tập nghiệm của bpt là: S = (- ¥; -2]È[-1;0]È[1; + ¥).
 Bài 7:
	1) Số tập con k phần tử được trích ra từ tập A là Þ Số tất cả các tập con không rỗng chứa một số chẵn các phần tử từ A là : S = .
	Xét f(x) = 
	Khi đó f(1) =250 .
	f(-1) = 0 
Do đó: f(1) + f(-1) = 250 Û Þ .
Kết luận:Số tập con tìm được là 
	2) Ta có . Do đó: 
Bài 8: Gọi E là trung điểm của BC, H là trọng tâm của D ABC. Vì A'.ABC là hình chóp đều nên góc giữa hai mặt phẳng (ABC) và (A'BC) là j = .
Tá có : Þ .
Do đó: ; 
.
Do đó: 
.
 (đvtt)
ĐÁP ÁN ĐỀ THI THỬ SỐ 61
Câu
Ý
Nội dung
Điểm
I
2
1,00
Xét phương trình với (1)
Đặt , phương trình (1) trở thành: 
Vì nên , giữa x và t có sự tương ứng một đối một, do đó số nghiệm của phương trình (1) và (2) bằng nhau.
0,25
Ta có: 
Gọi (C1): với và (D): y = 1 – m.
Phương trình (3) là phương trình hoành độ giao điểm của (C1) và (D).
Chú ý rằng (C1) giống như đồ thị (C) trong miền .
0,25
Dựa vào đồ thị ta có kết luận sau:
 	: Phương trình đã cho vô nghiệm.
 	: Phương trình đã cho có 2 nghiệm.
	: Phương trình đã cho có 4 nghiệm.
 	: Phương trình đã cho có 2 nghiệm.
 	 : Phương trình đã cho có 1 nghiệm.
m < 0	 : Phương trình đã cho vô nghiệm.
0,50
II
2,00
1
1,00
Phương trình đã cho tương đương: 
0,50
0,50
2
1,00
Điều kiện: 
Đặt ; không thỏa hệ nên xét ta có . 
Hệ phương trình đã cho có dạng:
0,25
 hoặc 
+ (I)
+ (II)
0,25
Giải hệ (I), (II).
0,25
Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban đầu là 
0,25
Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban đầu là 
1,00
III
0,25
Diện tích miền phẳng giới hạn bởi: và 
Phương trình hoành độ giao điểm của (C) và (d):
Suy ra diện tích cần tính:
0,25
Tính: 
Vì nên 
0,25
Tính 
Vì và nên .
0,25
Vậy 
1,00
IV
0,25
Gọi H, H’ là tâm của các tam giác đều ABC, A’B’C’. Gọi I, I’ là trung điểm của AB, A’B’. Ta có:
Suy ra hình cầu nội tiếp hình chóp cụt này tiếp xúc với hai đáy tại H, H’ và tiếp xúc với mặt bên (ABB’A’) tại điểm .
0,25
Gọi x là cạnh đáy nhỏ, theo giả thiết 2x là cạnh đáy lớn. Ta có:
Tam giác IOI’ vuông ở O nên: 
0,25
Thể tích hình chóp cụt tính bởi: 
Trong đó: 
0,25
Từ đó, ta có: 
0,25
V
1,00
Ta có:
+/ ;
+/ 
+/ 
Do đó phương trình đã cho tương đương:
Đặt (điều kiện: ). 
0,25
Khi đó . Phương trình (1) trở thành:
 (2) với 
Đây là phuơng trình hoành độ giao điểm của 2 đường (là đường song song với Ox và cắt trục tung tại điểm có tung độ 2 – 2m) và (P): với .
0,25
Trong đoạn , hàm số đạt giá trị nhỏ nhất là tại và đạt giá trị lớn nhất là tại . 
0,25
Do đó yêu cầu của bài toán thỏa mãn khi và chỉ khi 
.
0,25
VIa
2,00
1
1,00
Điểm . 
Suy 

File đính kèm:

  • docDe thi thu dai hoc số 56-75.doc
Giáo án liên quan