Đề thi thử đại học môn Toán - Đề 145 đến 150

I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh)

Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1)

1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)

2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8.

 

doc36 trang | Chia sẻ: tuananh27 | Lượt xem: 663 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Đề thi thử đại học môn Toán - Đề 145 đến 150, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ính theo a khoảng cách từ B đến mặt phẳng (SAC). 
PHẦN RIÊNG
1. Theo chương trình chuẩn:
Câu 6a: Cho D ABC có B(1;2), phân giác trong góc A có phương trình (D ) 2x +y –1 =0; khoảng cách từ C đến (D ) bằng 2 lần khoảng cách từ B đến (D). Tìm A, C biết C thuộc trục tung. 
Câu 7a: Trong không gian Oxyz cho mp(P): x –2y +z -2 =0 và hai đường thẳng :
(d1) ; (d2) . Viết phương trình tham số của đường thẳng D nằm trong mp(P) và cắt cả 2 đường thẳng (d1) , (d2)
2. Theo chương trình nâng cao:
 Câu 6b: Cho D ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G Î (d) 3x –y –8 =0. tìm bán kinh đường tròn nội tiếp D ABC.
Câu 7b: Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: 
(P): 2x–2y–z +1 =0, (Q): x+2y –2z –4 =0 và mặt cầu (S): x2 +y2 +z2 +4x –6y +m =0. Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN= 8.
...................................................
Đáp án ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 147 )
Phần chung:
 Câu 1: Cho hàm số y = có đồ thị là (C)
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên.
2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, b sao cho AB ngắn nhất.
Giải: 1) y= (C)
 	D= R\ {2}
TCĐ x = 2
 	y’ = 
 BBT 
	2) Gọi M(xo; )Î (C) .
	Phương trình tiếp tuyến tại M: (D) y = 
	(D ) Ç TCĐ = A (2; )
	(D ) Ç TCN = B (2x0 –2; 2)
Þ AB = 
Þ AB min = Û 
Câu 2: 
1) Giải phương trình: 
Giải: phương trình Û 2(cosx–sinx)(sinx–cosx)=0 Û 
2) Giải hệ phương trình: 
Giải: 	(1) Þ y ¹ 0
	Hệ Û
	Đặt a = 2x; b = . Ta có hệ: 
	® Hệ đã cho có 2 nghiệm 
Câu 3: 
1) Tính tích phân I =
Giải: 	 I =. 
§Æt 
Þ I = 
2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực:
	 (m - 3) + ( 2- m)x + 3 - m = 0. (1) 
 Giải: 	Đk x ³ 0. đặt t = ; t ³ 0
trở thành (m–3)t+(2-m)t2 +3-m = 0 Û (2) 
Xét hàm số f(t) = (t ³ 0) 
Lập bảng biến thiên 
(1) có nghiệm Û (2) có nghiệm t ³ 0 Û 
Câu 4: Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 
Giải: 
	Þ 
	Tương tự, 
	Ta sẽ chứng minh: 
	Bđt(1) Û 4(a3b2+b3a2+c3a2) +2(a3+b3+c3 )+2(ab2+bc2+ca2)+( a+b+c) ³ 
	³ 8a2b2c2 +4(a2b2 +b2c2 +c2a2) +2 (a2 +b2 +c2 )+1 (2)
	Ta có: 	2a3b2 +2ab2 ³ 4a2b2; . (3)
	2(a3b2+b3a2+c3a2) ³ 2.3.=6 (do abc =1)(4)
	 a3+b3+c3 ³ 3abc =3 = 1 +2 a2b2c2	(5)
	a3 +a ³ 2a2; .	(6)
	Công các vế của (3), (4), (5), (6), ta được (2). 
	Dấu bằng xảy ra khi a=b=c=1
Câu 5: Cho hình chóp S. ABC có góc ((SBC), (ACB)) =600, ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). 
Giải: 
Gọi M là trung điểm của BC và O là hình chiếu của S lên AM. Suy ra:
SM =AM =; và SO ^ mp(ABC)
Þ d(S; BAC) = SO =
Þ V(S.ABC) =
Mặt khác, V(S.ABC) =
 DSAC cân tại C có CS =CA =a; SA =
Þ dt(SAC) = 
Vậy d(B; SAC) = 
Phần riêng:
Theo chương trình chuẩn:
Câu 6a: Cho D ABC có B(1;2), phân giác trong góc A có phương trình (D ) 2x +y –1 =0; khoảng cách từ C đến (D ) bằng 2 lần khoảng cách từ B đến (D). Tìm A, C biết C thuộc trục tung. 
Giải: 	Gọi H, I lần lượt là hình chiếu của B, C lên (D).
	M là đối xứng của B qua D Þ M Î AC và M là trung điểm của AC.
(BH): x –2y + 3 =0 ® H® M 
BH = ÞCI = ; CÎ Oy Þ C(0; y0) Þ 
C(0; 7) Þ A (D)®loại
(0; –5) Þ A(D)® nhận.
Câu 7a: Trong không gian Oxyz cho mp(P): x –2y +z -2 =0 và hai đường thẳng :
(d1) ; (d2) . Viết phương trình tham số của đường thẳng D nằm trong mp(P) và cắt cả 2 đường thẳng (d1) , (d2)
Giải:	(P) Ç (d1) = A(1;1;2); (P) Ç (d2) = B(3;3;2)® (D)
Theo chương trình nâng cao:
 Câu 6b: Cho D ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G Î (d) 3x –y –8 =0. tìm bán kinh đường tròn nội tiếp D ABC.
Giải: 	C(a; b) , (AB): x –y –5 =0 Þ d(C; AB) = 
Þ 
Trọng tâm G Î (d) Þ 3a –b =4 (3)
(1), (3) Þ C(–2; 10) Þ r = 
(2), (3) Þ C(1; –1) Þ 
	Câu 7b: Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: 
	(P): 2x–2y–z +1 =0, (Q): x+2y –2z –4 =0 và mặt cầu (S): x2 +y2 +z2 +4x –6y +m =0. 
	Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN= 8.
	Giải: 	 (S) tâm I(-2;3;0), bán kính R= 
	Gọi H là trung điểm của MN Þ MH= 4 Þ IH = d(I; d) = 
	(d) qua A(0;1;-1), VTCP Þ d(I; d) = 
	Vậy : =3 Û m = –12( thỏa đk) 
..........................................................................................
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 148 )
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I (2,0 điểm). Cho hàm số y = .
Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số.
Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất.
Câu II (2,0 điểm)
Giải phương trình 
Giải phương trình 
Câu III (1,0 điểm). Tính tích phân .	
Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên các cạnh AB, AC sao cho . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứng minh rằng: 
Câu V (1,0 điểm). Cho x, y, z thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức
II. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).
A. Theo chương trình Chuẩn:
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0, phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hình chữ nhật.
2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng 
d1: , d2: 
Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d1 và d2.
Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i)n , biết rằng n Î N thỏa mãn phương trình 
log4(n – 3) + log4(n + 9) = 3
B. Theo chương trình Nâng cao:
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai đỉnh B và C lần lượt nằm trên hai đường thẳng d1: x + y + 5 = 0 và d2: x + 2y – 7 = 0. Viết phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG. 
2. Trong không gian toạ độ cho đường thẳng d: và mặt phẳng (P): x + y + z + 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng nằm trong mặt phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới bằng . 
Câu VII.b (1,0 điểm). Giải hệ phương trình 
-------------------Hết -------------------
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 148 )
Câu
Nội dung
Điểm
I
HS tu lam
2,0
II
2.0
1
Giải phương trình 
1.0
ĐK: 
0.25
Khi đó 
0.25
 (thoả mãn điều kiện)
0.25
Vậy phương trình đã cho có nghiệm là: và 
0.25
2
Giải phương trình: 
1.0
0.25
0.25
0.25
Vậy phương trình đã cho có một nghiệm x = - 1. 
0.25
III
Tính tích phân .
1.0
Đặt u = ; đổi cận:
0.25
Ta có: 
0.25
0.25
0.25
IV
1.0
Dựng 
Do mà là 
tứ diện đều nên là tâm tam giác đều .
0.25
Trong tam giác vuông DHA: 
Diện tích tam giác là 
0.25
Thể tích tứ diện là 
0.25
Ta có: 
Û
0.25
V
1.0
Trước hết ta có: (biến đổi tương đương) 
0.25
Đặt x + y + z = a. Khi đó 
(với t = , )
0.25
Xét hàm số f(t) = (1 – t)3 + 64t3 với t. Có
Lập bảng biến thiên
0.25
 GTNN của P là đạt được khi x = y = 4z > 0
0.25
VI.a
2.0
1
1.0
Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ:
0.25
Lại có: Tứ giác ABCD là hình chữ nhật nên góc giữa AC và AB bằng góc giữa AB và BD, kí hiệu (với a2+ b2 > 0) lần lượt là VTPT của các đường thẳng AB, BD, AC. Khi đó ta có: 
0.25
- Với a = - b. Chọn a = 1 b = - 1. Khi đó Phương trình AC: x – y – 1 = 0, 
A = AB Ç AC nên toạ độ điểm A là nghiệm của hệ: 
Gọi I là tâm hình chữ nhật thì I = AC Ç BD nên toạ độ I là nghiệm của hệ:
Do I là trung điểm của AC và BD nên toạ độ 
0.25
- Với b = - 7a (loại vì AC không cắt BD)
0.25
2
1.0
Phương trình tham số của d1 và d2 là: 
0.25
Giả sử d cắt d1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d2 tại N(2 + m ; - 2 + 5m ; - 2m) 
(3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t).
0.25
Do d ^ (P) có VTPT nên có nghiệm
0.25
Giải hệ tìm được 
Khi đó điểm M(1; 4; 3) Phương trình d: thoả mãn bài toán
0.25
VII.a
Tìm phần thực của số phức z = (1 + i)n , biết rằng n Î N thỏa mãn phương trình 
log4(n – 3) + log4(n + 9) = 3
1.0
Điều kiện: 
Phương trình log4(n – 3) + log4(n + 9) = 3 Û log4(n – 3)(n + 9) = 3
0.25
(thoả mãn)
(không thoả mãn)
Û (n – 3)(n + 9) = 43 Û n2 + 6n – 91 = 0 
Vậy n = 7.
0.25
Khi đó z = (1 + i)n = (1 + i)7 = 
0.25
Vậy phần thực của số phức z là 8.
0.25
VI.b
2.0
1
1.0
Giả sử 
Vì G là trọng tâm nên ta có hệ: 
0.25
Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 
0.25
Ta có nên phương trình BG: 4x – 3y – 8 = 0 
0.25
Bán kính R = d(C; BG) = phương trình đường tròn: (x – 5)2 +(y – 1)2 = 
0.25
2
1.0
Ta có phương trình tham số của d là: 
 Þ toạ độ điểm M là nghiệm của hệ (tham số t)
0.25
Lại có VTPT của(P) là , VTCP của d là .
 Vì nằm trong (P) và vuông góc với d nên VTCP 
Gọi N(x; y; z) là hình chiếu vuông góc của M trên , khi đó.
Ta có vuông góc với nên ta có phương trình: 2x – 3y + z – 11 = 0 
Lại có N(P) và MN = ta có hệ: 
0.25
Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5)
0.25
Nếu N(5; -2; -5) ta có pt 
Nếu N(-3; -4; 5) ta có pt 
0.25
VII.b
Giải hệ phương trình 
1.0
Điều kiện: 
0.25
Hệ phương trình 
0.25
0.25
(không thỏa mãn đk)
(không thỏa mãn đk)
Vậy hệ phương trình đã cho vô nghiệm.
0.25
Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như
đáp án quy định.
.................................................................................
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 149 )
 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu I:(2,0 điểm) Cho hàm số (C ) với m là tham số.
 	1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) khi . 
2. Tìm các gíá trị của m để đồ thị của hàm số (C) có hai điểm cực trị và chứng tỏ rằng hai điểm cực trị này ở về hai phía của trục tung.
Câu II:(2,0 điểm)
 	1. Giải phương trình: .
 	2. Tính tích phân : .
Câu I

File đính kèm:

  • docDe thi thu dai hoc Số 145-150.doc