Đề thi thử đại học môn Toán - Đề 126

Câu IV (1 điểm):Trên đường thẳng vuông góc tại A với mặt phẳng của hình vuông ABCD cạnh a ta lấy điểm S với SA = 2a . Gọi B’, D’ là hình chiếu vuông góc của A lên SB và SD. Mặt phẳng (AB’D’ ) cắt SC tại C’ . Tính thể tích khối đa diện ABCDD’ C’ B’.

doc6 trang | Chia sẻ: tuananh27 | Lượt xem: 558 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề thi thử đại học môn Toán - Đề 126, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010	 Môn thi : TOÁN (ĐỀ 126 )
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm).
Câu I (2 điểm): Cho hµm sè 
1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè ®· cho.
2. T×m trªn (C) nh÷ng ®iÓm cã tæng kho¶ng c¸ch ®Õn hai tiÖm cËn cña (C) nhá nhÊt
Câu II (2 điểm):1) Giải phương trình: .
2) Giải hệ phương trình: .
Câu III (1 điểm): Tính tích phân: .
Câu IV (1 điểm):Trên đường thẳng vuông góc tại A với mặt phẳng của hình vuông ABCD cạnh a ta lấy điểm S với SA = 2a . Gọi B’, D’ là hình chiếu vuông góc của A lên SB và SD. Mặt phẳng (AB’D’ ) cắt SC tại C’ . Tính thể tích khối đa diện ABCDD’ C’ B’.
Câu V (1 điểm): Tam gi¸c ABC cã ®Æc ®iÓm g× nÕu c¸c gãc tho¶ m·n:
II. PHẦN RIÊNG CHO TỪNG CHƯƠNG TRÌNH ( 3 điểm).
Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)
1. Theo chương trình Chuẩn:
Câu VI.a (2 điểm): 1) Trong mặt phẳng toạ độ Oxy , cho đường tròn ( C) : và đường thẳng (d) : ( m là tham số). Gọi I là tâm của đường tròn . Tìm m để đường thẳng (d) cắt (C) tại 2 điểm phân biệt A,B thoả mãn chu vi IAB bằng .
2) Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng : và 
 . Viết phương trình mặt phẳng chứa (d1) và hợp với (d2) một góc 300.
Câu VII.a (1 điểm): Chứng minh rằng với a, b, c>0 ta có: 
2. Theo chương trình Nâng cao:
Câu VI.b (2 điểm) 1) Trong mặt phẳng Oxy cho đường tròn (C) tâm I(-1; 1), bán kính R=1, M là một điểm trên . Hai tiếp tuyến qua M tạo với (d) một góc 450 tiếp xúc với (C) tại A, B. Viết phương trình đường thẳng AB.
2) Trong không gian Oxyz cho tứ diện ABCD biết A(0; 0; 2), B(-2; 2; 0), C(2; 0; 2), và với H là trực tâm tam giác ABC. Tính góc giữa (DAB) và (ABC).
Câu VII.b (1 điểm): Chứng minh rằng với a, b, c>0 ta có: 
 .
ĐÁP ÁN THI THỬ LẦN 2 NĂM 2008- 2009- MÔN TOÁN.
PHẦN CHUNG.
Câu 
Phần
Nội dung
Điểm
Câu I
(2,0)
1(1,0)
HS tù gi¶i
2(1,0)
HS tù gi¶i
Câu 
Phần
Nội dung
Điểm
Câu II
(2,0)
1(1,0)
+ Giải (1): 
+ Giải (2): Đặt ta có phương trình: .
Với ta có: 
Với ta có: 
KL: Vậy phương trình có 4 họ nghiệm: , ,
, .
0,5
0,25
0,25
2(1,0)
§k ®Æt 
Ta ®­îc 
Khi ®ã KL
0,25
0,25
0,25
0,25
Câu 
Phần
Nội dung
Điểm
Câu III
(1,0)
+ Tính: . Đặt: .
Khi đó: 
=
+ Tính: . Đặt: .
Suy ra: , với sao cho ,
Khi đó: 
+ Tính: . Đặt: .
Khi đó: 
KL: Vậy , ( ,)
0,25
0,25
0,25
0,25
Câu 
Phần
Nội dung
Điểm
Câu IV
(1,0)
O
A
D
B
C
S
C'
B'
D'
+ Trong tam giác SAB hạ .
Trong tam giác SAD hạ .
Dễ có: 
Suy ra: , mà . Từ đó có 
. 
Tương tự ta có: . Từ (1) và (2)
suy ra: .
Từ đó suy ra: 
+ Ta có: 
, .
Suy ra: ; 
Lại có B’D’ // BD (cùng thuộc mp(SBD) và cùng vuông góc với SC) nên 
 (vì dễ có nên ).
Xét hai tam giác đồng dạng SB’D’ và SBD suy ra: 
.
Ta có: 
+ Ta có: .
 . Suy ra thể tích đa diện cần tìm là:
 .
Chú ý: Vẽ hình sai không chấm.
0,25
0,5
0,25
Câu 
Phần
Nội dung
Điểm
Câu VIIa
(1,0)
Dễ có: .
+ Chứng minh: .
Áp dụng 2 lần (*) ta có: hay (1)
Tương tự ta có: (2) và (3)
Cộng (1), (2) và (3) theo vế với vế rồi rút gọn ta có điều phải chứng minh.
+ Chứng minh: 
Áp dụng (*) ta có: (4)
Tương tự ta có: 
Cộng (4), (5) và (6) theo vế với vế ta có điều phải chứng minh.
0,25
0,25
0,25
0,25
II. PHẦN RIÊNG.1. Chương trình Chuẩn.
Câu 
Phần
Nội dung
Điểm
CâuVIa.
(1,0)
1(1,0)
Câu 
Phần
Nội dung
Điểm
CâuVIa.
(1,0)
2(1,0)
Giả sử mặt phẳng cần tìm là: .
Trên đường thẳng (d1) lấy 2 điểm: A(1; 0; -1), B(-1; 1; 0).
Do qua A, B nên: nên 
.
Yêu cầu bài toán cho ta: 
Dễ thấy nên chọn b=1, suy ra: 
KL: Vậy có 2 mặt phẳng thỏa mãn: 
.
0,25
0,25
0,25
0,25
2. Chương trình Nâng cao.
Câu 
Phần
Nội dung
Điểm
CâuVIb.
(1,0)
1(1,0)
Dễ thấy . Hai tiếp tuyến hợp với (d) một góc 450 suy ra tam giác MAB vuông cân và tam giác IAM cũng vuông cân . Suy ra: .
a; a+2), , . 
Suy ra có 2 điểm thỏa mãn: M1(0; 2) và M2 (-2; 0).
+ Đường tròn tâm M1 bán kinh R1=1 là (C1): .
Khi đó AB đi qua giao điểm của (C ) và (C1) nên AB:
.
+ Đường tròn tâm M2 bán kinh R2=1 là (C2): .
Khi đó AB đi qua giao điểm của (C ) và (C2) nên AB:
.
+ KL: Vậy có hai đường thẳng thỏa mãn: và .
0,5
0,25
0,25
Câu 
Phần
C
A
B
D
H
K
Nội dung
Điểm
CâuVIb.
(1,0)
2(1,0)
Trong tam giác ABC, gọi .
Khi đó, dễ thấy . Suy ra góc giữa (DAB) và 
(ABC) chính là góc .Ta tìm tọa độ điểm H rồi
Tính được HK là xong.
+ Phương trình mặt phẳng (ABC).
Vecto pháp tuyến 
(ABC): .
+ nên giả sử .
Ta có: 
Khi đó: 
Vậy H(-2; -2; 4).
+ Phương trình mặt phẳng qua H và vuông góc với AB là: .
 Phương trình đường thẳng AB là: .
 Giải hệ: ta được x =2/3; y =-2/3, z =8/3.
Suy ra: K(2/3;-2/3; 8/3). Suy ra: . 
Gọi là góc cần tìm thì:
Vậy là góc cần tìm.
0,25
0,25
0,25
0,25
Câu 
Phần
Nội dung
Điểm
CâuVIIb.
(1,0)
Víi a,b >0 ta cã 
CM t2 råi céng vÕ víi vÕ ta ®­îc dpcm
0,25
0,5
0,25
CâuV Ta cã tanA+tanB=
 kh«ng nhän nªn ®Æt x=tanA>0,y=tanB>0,z=tanC>0
Tõ GT ta cã víi x,y,z>0.DÔ dµng CM ®­îc .DÊu “=”x¶y ra khi vµ chØ khi x=y=z hay tam gi¸c ABC ®Òu

File đính kèm:

  • docDe thi thu dai hoc số 126.doc