Đề thi thử đại họ trường THPT chuyên Lê Quý Đôn
I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh)
Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8.
Câu 2 (2đ) 1. Giải hệ phương trình:
2. Giải phương trình: 9x + ( - 12).3x + 11 - = 0
Câu 3 (1đ) Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng
cách giữa cạnh bên và cạnh đáy đối diện bằng m.
Câu 4 (1đ) Tính tích phân:
Câu 5 (1đ) Cho tam giác ABC, với BC = a, CA = b, AB = c. Thoả mãn hệ điều kiện:
CMR:
SỞ GD-ĐT QUẢNG TRỊ ĐỀ THI THỬ ĐẠI HỌC (Đợt 2- 17/4/2010) TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN (Thời gian làm bài: 180 phút) I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh) Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8. Câu 2 (2đ) 1. Giải hệ phương trình: 2. Giải phương trình: 9x + ( - 12).3x + 11 - = 0 Câu 3 (1đ) Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách giữa cạnh bên và cạnh đáy đối diện bằng m. Câu 4 (1đ) Tính tích phân: Câu 5 (1đ) Cho tam giác ABC, với BC = a, CA = b, AB = c. Thoả mãn hệ điều kiện: CMR: II. PHẦN RIÊNG (3đ) (Thí sinh chỉ làm một trong hai phần) Theo chương trình chuẩn: Câu 6a (2đ) 1. Trong mặt phẳng (oxy) cho đường thẳng (d): 3x - 4y + 5 = 0 và đường tròn (C): x2 + y2 + 2x - 6y + 9 = 0 Tìm những điểm M (C) và N (d) sao cho MN có độ dài nhỏ nhất. 2. Trong không gian (oxyz) cho hai mặt phẳng: (P1): x - 2y + 2z - 3 = 0 (P2): 2x + y - 2z - 4 = 0 và đường thẳng (d): Lập phương trình mặt cầu (S) có tâm I(d) và tiếp xúc với hai mặt phẳng (P1), (P2). Câu 7a (1đ) Đặt: (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12. Tính hệ số a7. Theo chương trình nâng cao Câu 6b (2đ) 1. Trong mặt phẳng (Oxy) cho đường tròn (C): (x + 1)2 + (y - 3)2 = 1 và điểm M . Tìm trên (C) những điểm N sao cho MN có độ dài lớn nhất. 2. Trong không gian (Oxyz), cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y - 2z + 5 = 0 và mặt phẳng (P): x - 2y + 2z - 3 = 0. Tìm những điểm M (S), N (P) sao cho MN có độ dài nhỏ nhất. Câu 7b (1đ) Dùng định nghĩa, tính đạo hàm của hàm số: tại điểm x0 = 0. ............. Hết ...............
File đính kèm:
- de thi thu dai hoc mon toan.doc