Đề tài Một số biện pháp khắc phục những sai sót khi giải toán liên quan đến bội và ước lớp 6

Trong chương trình môn toán THCS hiện nay, chương trình của mỗi khối có một nét đặc trưng riêng song luôn có sự gắn kết bổ sung giữa các đơn vị kiến thức mà đặc biệt là môn số học 6 nói chung, các bài toán liên quan đến bội và ước nói riêng. Nó có ý nghĩa rất quan trọng : là cơ sở ban đầu, là nền tảng cho việc tiếp tục học toán ở các lớp tiếp theo.

doc11 trang | Chia sẻ: maika100 | Lượt xem: 1107 | Lượt tải: 1download
Bạn đang xem nội dung tài liệu Đề tài Một số biện pháp khắc phục những sai sót khi giải toán liên quan đến bội và ước lớp 6, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 con em, thường xuyên trao đổi thông tin học tập.
Nắm bắt được nguyên nhân và đã kịp thời đưa ra biện pháp giải quyết nguyên nhân nhưng học sinh vẫn mắc phải những sai sót.Vì vậy, tôi đã xác định các luận điểm và đưa ra biện pháp khắc phục.
4/ Diễn giải các luận điểm : 
 Sau đây tôi sẽ đi sâu diễn giải các luận điểm với mỗi dạng bài tôi sẽ chỉ ra những sai sót qua các ví dụ minh chứng đã gặp và chỉ rõ các biện pháp khắc phục đã thực hiện.
 4.1/ Sử dụng ký hiệu toán học : 
 Trong quá trình giải quyết dạng toán về ước và bội, việc sử dụng ký hiệu toán học đóng vai trò khá quan trọng. Vì vậy đối với các kiến thức về tập hợp nếu học sinh không hiểu và nắm vững các ký hiệu, cách ghi ký hiệu nên dẫn đến sai sót trong trình bày.Đại bộ phận học sinh yếu và trung bình yếu.
 Ví dụ : Bài tập 136/ 53 SGK tập 1. 
 Học sinh ghi tập hợp A các số tự nhiên nhỏ hơn 40 là bội của 6:
 A = 0 ; 6 ; 12 ; 18 ; 24 ; 30 ; 36 mà không dùng dấu ngoặc nhọn để chỉ tập hợp A
Hoặc giữa các phần tử bằng số mà học sinh chỉ ghi dấu phẩy (,) mà không ghi dấu chấm phẩy (;) như A = {0 , 6 , 12 , 18 , 24 , 30 , 36 } 
 	 Hoặc thiếu dấu bằng “ = ” chẳng hạn như :
Viết tập hợp B các số tự nhiên nhỏ hơn 40 là bội của 9.
 B {0 ; 9 ; 18 ; 27 ; 36 }
hoặc ghi ký hiệu tập hợp bằng chữ in thường 
 b = {0 ; 9 ; 18 ; 27 ; 36 }
- Phần đông học sinh sử dụng không thành thạo các ký hiệu : ; ; ; 
 Chẳng hạn : ƯC ( 4 ; 6 ) = Ư ( 4 ) Ư ( 6 ) ( sai dấu )
hay thay vì ghi 6 ƯC ( 12 ; 18 ) học sinh lại ghi 6 ƯC (12 ;18 ) 
hay tập hợp M là tập hợp con của tập hợp A thì học sinh lại ghi M A hay M A
 Biện pháp : 
 Để khắc phục những sai sót trên, đây là sai sót đáng tiếc, giáo viên cần thường xuyên cho học sinh sử dụng các ký hiệu toán học quen thuộc này thông qua các bài tập trắc nghiệm : Phân biệt cách ghi đúng sai, tìm chỗ sai và sửa sai trong cách ghi hoặc thông qua một số phản ví dụ nhằm giúp các em khắc sâu các ký hiệu toán học và tránh được một số nhầm lẫn đáng tiếc.Cần giải thích thấu đáo để các em hiểu đó là quy định bắt buộc không thể thay đổi.Giải thích rõ quan hệ giữa phần tử với tập hợp chỉ có thể là : phần tử thuộc “” hoặc không thuộc “” tập hợp. Còn quan hệ giữa tập hợp và tập hợp là : tập hợp này là con của tập hợp kia hoặc tập hợp này bằng tập hợp kia.
 Trong từng tiết dạy cần cho các em tự tìm cái sai và sửa sai qua từng chi tiết nhỏ nhất dần tạo cho các em thói quen cẩn thận trong quá trình giải toán. 
4.2/ Sai sót do cẩu thả, thiếu tính cẩn thận chính xác khi làm bài :
 Khi giải các bài tập về tìm ƯCLN hoặc BCNN, học sinh trung bình, trung bình khá thường mắc phải sai sót nhiều nhất là tính toán không cẩn thận kể cả trong phép chia cho số có một chữ số . Chẳng hạn phân tích số 420 ra thừa số nguyên tố, học sinh sẽ ghi :
 420 2
 210 2
 15(sai)
Sai do chia 210 cho 2 bị sai vì học sinh thiếu tính cẩn thận, cẩu thả trong quá trình tính toán.
Hoặc phân tích số 45 ra thừa số nguyên tố, học sinh thực hiện
 3
15
1
Sai do các em không chia cho ước các thừa số nguyên tố mà thực hiện phép chia hết.
 Hoặc BCNN (8 ; 18 ; 30 ) = 23 . 32 . 5 = 6 . 9 . 5 = 270 ( Sai do học sinh tính toán sai 23 =6 )
 Biện pháp :
 Với những sai sót này đòi hỏi giáo viên phải nhắc nhở học sinh cẩn thận với từng con số, từng phép tính, khi thực hiện xong mỗi một phép tính, mỗi một bài toán các em cần “ dò ” lại bài, có thể qua phép toán ngược hoặc làm lại lần hai xem có nhầm lẫn con số, phép tính nào không ? Việc làm này cần được tập thành thói quen
thường xuyên khi giải toán. Thông qua các bài tập ở bảng lớp trong từng tiết dạy giáo viên cũng hướng dẫn sửa sai tương tự để học sinh dần đi vào nếp, dần dần tạo cho tính cẩn thận, chính xác.
 4.3/ Sai sót do không nắm vững hệ thống kiến thức :
 Khi tìm ƯCLN và BCNN của 2 hay nhiều số, ngoài việc mắc phải những sai sót như đã nói ở trên học sinh còn khá nhiều sai sót cơ bản do không nắm vững hệ thống kiến thức. Chẳng hạn cách viết ký hiệu ƯCLN và BCNN, học sinh vẫn còn nhầm lẫn giữa hai ký hiệu này do không hiểu rõ bản chất của ƯCLN là “ số lớn nhất trong tất cả các ƯC ” hoặc BCNN là “ số nhỏ nhất khác 0 trong các BC ”. Sau khi học bài ƯCLN và BCNN, học sinh vẫn không vận dụng được cách tìm ưc thông qua ƯCLN hoặc BC thông qua BCNN mà vẫn giữ thói quen tìm ƯC hoặc BC qua các bài trước vừa mất nhiều thời gian vừa không liên kết kiến thức.
 Khi tìm ƯCLN và BCNN, học sinh còn mất khá nhiều công sức khi phân tích một số ra thừa số nguyên tố do không nắm vững sàng Ơ- ra –tô- xten, không thuộc các số nguyên tố nhỏ hơn 100.Do không hệ thống được kiến thức, phân biệt được sự giống và khác nhau giữa cách tìm ƯCLN và BCNN nên học sinh mắc rất nhiều sai sót khi tìm ƯCLN và BCNN dẫn đến những sai sót đáng tiếc sau này khi giải bài toán giải liên quan đến bội và ước và tìm mẫu số chung ở phần phân số.
 * Một số ví dụ cụ thể :
 Ví dụ 1: Bài tập 142/56 SGK toán 6 tập I
 Tìm ƯCLN rồi tìm ƯC của 60;90;135.
 Bài giải : Bước 1 : 60 = 22.3.5 ; 90 = 2.32.5 ; 135 = 33. 5.
 Bước 2 : ƯCLN ( 60; 90; 135) 3.5=15
 Bước 3 : ƯC ( 60;90;135) = Ư(15) = {1;3;5;15}
 Học sinh sẽ mắc sai sót :
 Bước 1 : Nhiều em còn yếu sẽ rất lúng túng và không phân tích được các số ra thừa số nguyên tố do không nắm các số nguyên tố.
 Bước 2 : Học sinh sẽ sai sót vì không biết phải chọn thừa số nguyên tố chung hay riêng, số mũ lớn nhất hay số mũ nhỏ nhất vì không nắm vững quy tắc tìm ƯCLN và BCNN.
Bước 3 : Rất nhiều học sinh sẽ không đi theo bước 3 mà quay lại lần lượt tìm Ư(60), Ư(90), Ư(135) rồi tìm giao của 3 tập hợp ước đó theo cách làm ở bài 16 vừa tốn nhiều công sức vừa rất dễ gặp sai sót, hoặc một số em biết cách làm nhưng lại rất lúng túng trong trình bày thậm chí là trình bày sai.
 Biện pháp : 
 Đối với việc học sinh không nắm được hệ thống các số nguyên tố nhỏ hơn 100 thì giáo viên có thể bắt buộc từng đôi bạn hoặc nhóm học tập tự kiểm tra và báo cáo kết quả. Hoặc khi dạy về phần số nguyên tố, sau tiết học có thể tổ chức một trò chơi nhỏ vui : Điền số nguyên tố còn thiếu vào bảng theo yêu cầu của đề bài. Học sinh sẽ rất hào hứng tham gia, vừa gây hứng thú học tập vừa khắc sâu
 kiến thức cho các em. Sai sót do không biết cách tìm ƯCLN và BCNN : Đây là sai sót rất thường gặp.Vì vậy sau hai bài học này, giáo viên cần cho học sinh tự so sánh hai cách tìm để tìm ra điểm giống khác nhau giữa hai quy tắc. Đồng thời cũng thường xuyên củng cố hai quy tắc này qua các bài tập củng cố. Nhấn mạnh những sai sót thường gặp đó và nói rõ tác hại nguy hiểm của các sai sót đó. Yêu cầu mỗi em lập bảng so sánh dán ngay đầu trang bìa vở để thường xuyên đập vào mắt các em giúp các dễ nhớ kiến thức.
 Riêng với cách tìm ƯC và BC thông qua ƯCLN và BCNN: 
 Sau khi học lý thuyết giáo viên cho các em thực hành một số ví dụ sau khi đã có một bài giải mẫu. Đưa ra cho các em lời khuyên “ từ bài này trở đi ta không cần tìm ƯC và BC bằng cách làm như ở bài 16 ” 
Ví dụ 2 : Bài tập 152/ 59 SGK toán 6 tập 1. 
 Tìm số tự nhiên a nhỏ nhất khác 0 biết a 15 và a 18 .
 Do không nắm được định nghĩa về BCNN và định nghĩa BC, học sinh sẽ không biết được đề bài yêu cầu tìm cái gì và chắc chắn sẽ không giải được bài toán.
Biện pháp : 
 Đứng trước khó khăn này của học sinh chúng ta cần biết tháo gỡ khúc mắc cho các em qua hệ thống câu hỏi gợi mở đơn giản mà cụ thể vừa hệ thống kiến thức lại cho các em vừa giúp các em giải được bài như:
 + a 15 và a 18 thì a được gọi là gì của 15 và 18 ?
 + a lại là số tự nhiên nhỏ nhất khác 0.
Vậy a cần tìm này là gì ? .
 Từ các câu hỏi đó học sinh dễ dàng lập luận và giải được bài toán.
 Tóm lại :
 Đối với những bài toán có các bước giải cụ thể, giáo viên cần cho học sinh nắm vững “ thuật toán ” qua từng bước giải, rèn luyện từng bước rồi mới ráp vào bài toán, làm đi làm lại nhiều lần sau khi giáo viên đã giải bài toán mẫu.
 4.4/ Sai sót do không lập luận, lập luận không có căn cứ khi trình bày bài toán 
Trong trình bày bài toán bằng lời học sinh thường thiếu chính xác, lập luận không chặt chẽ, thiếu căn cứ, không có cơ sở toán học. Nguyên nhân là khả năng tư di các em chưa cao, phụ thuộc vào lứa tuổi. 
 * Một số ví dụ :
 Ví dụ 1 : Bài tập 146/ 57 SGK toán 6 tập 1 .
 Tìm số tự nhiên x biết rằng 112 x ; 140 x và 10 < x < 20 . 
Rất nhiều học sinh nhẩm tìm từng số nhưng khi hỏi lý do vì sao có các số đó thì học sinh rất lúng túng không thể trả lời được. Nguyên nhân là do các em chưa biết cách lập luận bài toán để giải cho lôgích.
 Biện pháp : 
 Đối với sai sót này , giáo viên cần chỉ cho các em biết cách xoáy sâu vào yêu cầu của đề , lập luận theo những điều đề đã cho để không đi lệch hướng hoặc hoặc giải bài toán chỉ có kết quả mà không qua một bước lập luận nào.Giáo viên có thể hướng dẫn cho học sinh tập lập luận qua một số câu hỏi gợi mở :
 + x N; 112 x ; 140 x như vậy x là gì ? 
 + 10 < x < 20 , vậy thì những số nào là số cần tìm ? 
 Ví dụ 2 : Bài tập 154/ 59 SGK toán 6 tập 1 
Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh của lớp 6C ?
 Sai sót : 
 Do không nắm vững “ thuật toán”, không nắm vững cách giải bài mẫu, thiếu sáng tạo, chắc chắn sẽ có khá nhiều học sinh lập luận không chặt chẽ bài toán hoặc thiếu một trong các bước giải cơ bản mặc dù vẫn tìm ra đáp số của bài toán nhưng chất lượng bài toán không cao. 
 Chẳng hạn :
 - Không có bước gọi chữ (a) thay giá trị cần tìm, nhưng ở bước tiếp theo lại xuất hiện a. 
 - Không có điều kiện của a.
 - Không lập luận mà lại đi tìm BC (2;3;4;8)
 - Không lập luận theo điều kiện đề bài mà đưa ra kết quả. 
 Biện pháp : 
 Với những sai sót ở ví dụ 2 này, giáo viên khắc phục bằng cách : 
 - Giải một bài toán mẫu tương tự.
 - Cho các em tự tìm ra các bước giải 
 - Giáo viên lập thành thuật toán : 
 B1: Gọi a ..( diều kiện của a )
 B2: Lập luận để có a là BC(.) hoặc là BCNN()
 B3: Tìm BC(.) hoặc BCNN(..)
 B4: Lập luận theo điều kiện để chọn kết quả.
 - Cho các em thực hành tập giải toán nhiều lần.
 4.5/ Sai sót do không biết cách trình bày hoặc trình bày tuỳ tiện, má

File đính kèm:

  • docSang kien kinh nghiem so hoc 6.doc
Giáo án liên quan