Đề ôn thi học sinh giỏi Toán 11 (Đề 10)
Câu III (7 điểm)
Trong mặt phẳng (P) cho đường tròn (O) bán kính R và điểm A cố định trên đường tròn (O). Tứ giác ABCD biến thiên, nội tiếp trong đường tròng (O) sao cho 2 đường chéo luôn vuông góc với nhau. Trên đường thẳng (d) vuông góc với mặt phẳng (P) tại A ta lấy điểm S. Nối S với A, B, C, D.
1) Chứng minh
2) Nêu cách xác định điểm I cách đều 5 điểm A, B, C, D và S.
3) Tứ giác ABCD là hình gì để diện tích của nó lớn nhất. Tìm giá trị lớn nhất đó theo R.
Câu I (5 điểm). 1) Chứng minh với mọi giá trị của x, ta có: 2) Giải phương trình: Câu II (5 điểm) Tính các góc của tam giác ABC nếu tam giác đó thỏa mãn: Trong đó BC = a, CA = b, AB = c và A, B, C là độ lớn 3 góc của tam giác ABC đối diện lần lượt với 3 cạnh BC, CA và AB. Câu III (7 điểm) Trong mặt phẳng (P) cho đường tròn (O) bán kính R và điểm A cố định trên đường tròn (O). Tứ giác ABCD biến thiên, nội tiếp trong đường tròng (O) sao cho 2 đường chéo luôn vuông góc với nhau. Trên đường thẳng (d) vuông góc với mặt phẳng (P) tại A ta lấy điểm S. Nối S với A, B, C, D. 1) Chứng minh 2) Nêu cách xác định điểm I cách đều 5 điểm A, B, C, D và S. 3) Tứ giác ABCD là hình gì để diện tích của nó lớn nhất. Tìm giá trị lớn nhất đó theo R. Câu IV (3 điểm). Cho các số thực a, b, c và d thỏa mãn điều kiện: Chứng minh rằng tồn tại các số thực u và v sao cho: và . ------------------
File đính kèm:
- de 10 -11.doc