Chuyên đề về phép dời 11

CHƯƠNG I : PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

TRONG MẶT MẶT PHẲNG

I.Mục tiêu :

1.Kiến thức :+ Hs nắm được định nghĩa, tính chất của các phép biến hình.

 + Phân biệt được sự giống nhau và khác nhau của các phép biến hình.

2.kỹ năng : + Tìm ảnh của một điểm, của một hình qua phép biến hình.

 +Nhận biết hình có tâm đối xứng, trục đối xứng, hai hình đối xứng, hai hình bằng nhau, hai hình đồng dạng.

3.Thái độ : tích cực.

II. Thời lượng và nội dung :

a)Thời lượng : 4 tiết (1 tiết lý thuyết, 3 tiết bài tập )

b)Nội dung :

 

doc12 trang | Chia sẻ: tuananh27 | Lượt xem: 734 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Chuyên đề về phép dời 11, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
với nó, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cò cùng bán kính.
*O
*O’
A
A’
B’
C’
B
C
c. Biểu thức toạ độ của phép tịnh tiến :
Trong mặt phặng toạ độ Oxy cho M(x;y) và (a;b) :
 M’=(M)=(x’;y’)
3.PHÉP ĐỐI XỨNG TRỤC.
a. Định nghĩa : Đd(M)=M’ d là đường trung trực của đoạn thẳng MM’, d là trục đối xứng.
b. Biểu thức toạ độ của phép đối xứng trục :
 Trong mặt phẳng Oxy cho M(x;y), 
 M’= ĐOx(M)=(x’;y’) thì :
 N’= ĐOy(N)=(x’;y’) thì : 
c. Tính chất :
 1. Đd(M)=M’ , Đd(N)=N’ M’N’=MN
 2. Tương tự tính chất của phép tịnh tiến. 
A
C’
B’
C
A’
B
O*
*O’
d
d. Trục đối xứng của một hình :
 Đd(H)= H thì d là trục đối xứng của hình H 
 Hình H là hình có trục đối xứng
4.PHÉP ĐỐI XỨNG TÂM.
 a. Định nghĩa : ĐI(M)=M’ 
 I gọi là tâm đối xứng.
 b. Biểu thức toạ độ của phép đối xứng trục :
 Trong mặt phẳng Oxy cho M(x;y), 
 M’= ĐO(M)=(x’;y’) thì :
 I(a;b), M’= ĐI(M)=(x’;y’) thì : 
c. Tính chất :
 1. ĐI(M)=M’ , ĐI(N)=N’ M’N’=MN
 2. Tương tự tính chất của phép tịnh tiến. 
A’
B’
C’
C
B
A
 I
*O
*O’
d. Tâm đối xứng của một hình :
ĐI(H)= H thì I là tâm đối xứng của hình H 
Hình H là hình có tâm đối xứng.
5.PHÉP QUAY
a. Định nghĩa :
 * (O)=O
 * (M)=M’ 
Điểm O là tâm quay, là góc quay.
b. Tính chất :
 1. (M)=M’, (N)=N’ M’N’=MN 
 2. Tương tự tính chất của phép tịnh tiến.
6.KHÁI NIỆM VỀ PHÉP DỜI HÌNH VÀ 2 HÌNH BẰNG NHAU 
a. Định nghĩa :
 F(M)=M’ , F(N)=N’ M’N’=MN 
b. Tính chất :
Phép dời hình :
+Biến ba điểm thẳng hàng thành 3 điểm thẳng hàng và bảo toàn thứ tự các điểm ấy.
+Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng bằng nó.
+Biến tam giác thành tam giác bằng nó, biến 1 góc thành 1 góc bằng nó.
+Biến đường tròn thành đường tròn có cùng bán kính.
c. Hai hình được gọi là bằng nhau nếu có 1 phép dời hình biến hình này thành hình kia.
7. PHÉP VỊ TỰ 
a. Định nghĩa :
 * (M)=M’ 
Điểm O là tâm vị tự, k là tỉ số vị tự .
b. Tính chất :
 1. (M)=M’, (N)=N’ M’N’=MN 
 2. Phép vị tự tỉ số k :
 +Biến ba điểm thẳng hàng thành 3 điểm thẳng hàng và bảo toàn thứ tự các điểm ấy.
+Biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đã cho, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
+Biến tam giác thành tam giác đồng dạng với tam giác đã cho, biến 1 góc thành 1 góc bằng nó.
+Biến đường trịn thành đường trịn cĩ bán kính R’= R
C’
B’
A’
C
B
A
I
O
O’
M
M’
c. tâm vị tự của 2 đường tròn :
Cho 2 đường tròn (C )và(C ‘) , :(C )= ( C ‘)
 O là tâm vị tự của 2 đường tròn .
8. PHÉP ĐỒNG DẠNG.
 a. Định nghĩa :
 F(M)=M’ , N’=F(N) M’N’=kMN , ( k > 0)
 b. Tính chất :
 * Phép đồng dạng tỉ số k :
+ Biến ba điểm thẳng hàng thành 3 điểm thẳng hàng và bảo toàn thứ tự các điểm ấy.
+ Biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
+ Biến tam giác thành tam giác đồng dạng với tam giác đã cho, biến 1 góc thành 1 góc bằng nó.
+ Biến đường tròn thành đường tròn có bán kính R’= kR
c. Hai hình đồng dạng :
 H đồng dạng với H ‘ nếu có một phép đồng dạng biến hình H
 thành hình H’ .
B. BÀI TẬP :
TIẾT 2 :
Bài 1 :a ) Kể tên các phép biến hình đã học ?
 b) Trong các phép biến hình trên phép nào là phép dời hình ?
Bài 2 : Vẽ ảnh của ABC và đường tròn tâm O, bán kính R qua phép biến hình sau :
 a)Phép đối xứng trục
 b)Phép đối xứng tâm
 c) Phép tịnh tiến 
 d)Phép vị tự tâm I tỉ số k = 2. 
Bài 3 : Trong mpOxy cho (1;3) và điểm M(-2;5)
 a) Ảnh của M qua phép tịnh tiến theo là :
 	A.(1;8) 	B. (-1;8) 	 C.(-3;2) 	 D. (3;-2)
b) Ảnh của M qua phép đối xứng trục Oy là :
 	A.(2;5) 	B. (2;-5) 	C.(-2;-5) 	D. (5;-2)
Bài 4 : Trong mp toạ độ Oxy cho A(-5;2), C(-1;0), biết (A)=B, (B)=C, và là hai véctơ nào sau đây để cĩ thể thực hiện phép biến đĩ A thành C.
 A) (-1;1) và (5;-3) B) (0;-2) và (3;0)
 C) (-4;1) và (2;-2) D) (5;1) và (1;-3) 
Bài 5 : Trong mpOxy cho 3 điểm : A(0;3), B(-2;-1), C(5;1)
 a)Tìm ảnh A’,B’, C’ của A,B,C qua phép đối xứng trục Ox
 b) Gọi G là trọng tâm của ABC . Tìm (G)= G’
 c)Viết phương trình đường thẳng là ảnh của đường thẳng GA qua .
HD :
Điểm M(x,y)" ĐOx(M)=M’(x;-y)
Vậy A’(0;-3), B’(-2;1), C(5,-1)
G là trọng tâm "G(1;1)
Ta cĩ:
 	Gọi G’(x,y) Ta cĩ: 
 	Ta cĩ: 
Vậy: G’(-1;-3)
c) Ta cĩ : 
Ảnh các đường thẳng GA qua phép tịnh tiến trên theo là đường thẳng G’B.
	Ta cĩ: là véc tơ chỉ phương của đường thẳng G’B.
	Vậy ptđt G’B là: 
TIẾT 3
Bài 6: Trong mặt phẳng Oxy cho M(2;2)
Ảnh của M qua phép đối xứng tâm O là:
A. (2;-2)	B. (-2,2)	C. (-2;-2)	D. Một kết quả khác
b) Ảnh của M qua phép quay tâm O, gĩc quay 45o là:
A. (0;2)	B. (2;0)	C. (;0)	D. (0; )
	ĐS :a) C	b) D
Bài 7: Trong mp Oxy cho đường trịn (C): x2+y2+2x-4y-3=0 (1) , tâm I:
Tìm ảnh của I và (C) qua phép đối xứng tâm O.
Tìm ảnh của I và (C) qua phép đối xứng trục Oy.
Bài giải:
Ta cĩ: 2a=2"a=1; 2b=-4"b=-2
	Vậy tâm I(-1;2)
- Ảnh của I qua phép đối xứng tâm O là I’(1,-2).
Theo biểu thức toạ độ của phép đối xứng tâm O ta cĩ: 
Thay vào (1) ta cĩ: (-x’)2+(-y’)2+2(-x’)-4(-y’)-3=0
x’2+y’2-2x’+4y’-3=0 
Vậy ảnh của (C) qua phép đối xứng tâm là đường trịn(C’) cĩ phương trình: 
 x2+y2-2x+4y-3=0
 b) I1 là ảnh của I qua phép đối xứng trục Oy ta cĩ: I1(1;2)
Ảnh của (C) qua phép đối xứng trục Oy là (C’) cĩ pt: 
(-x’)2+y’2+2(-x’)-4y’-3=0
 x’2 + y’2 -2x’-4y’-3=0
	Vậy pt đường trịn (C’) là: x2+y2-2x-4y-3=0
Bài 8: Trong các hình sau: hình thang cân, hình bình hành, hình thoi, tam giác cân. Hình nào cĩ tâm đối xứng, trục đối xứng.
Bài giải:
Hình cĩ tâm đối xứng: thoi, hình bình hành.
Hình cĩ trục đối xứng: thang cân, hình thoi, tam giác cân.
Bài 9: Trong mp Oxy cho đường trịn (C): x2+y2-2y-8=0. Tìm ảnh của đường trịn (C) qua phép quay quanh O gĩc quay 90o
Bài giải:
	Ta cĩ: a=0, 2b=-2 b=-1
Tâm I(0;1); bán kính 
	Gọi I’=Q(0,)(I) I’(-1;0)
Theo tính chất: Ảnh của đường trịn (C) qua phép quay trên là đường trịn (C’) : (x+1)2+y2=9
Bài 10: Trong mp Oxy cho phép biến hình F biến điểm M(x;y) thành M’(y;-x). CMR F là phép dời.
Bài giải:
	Ta cĩ: F(M)=M’
	F(N)=N’	(với N(x1;y1) N’(y1;-x1) )
	Ta cĩ: (1)
	(2)
	Từ (1) và (2) MN=M’N’
Vậy F là phép dời.
Tiết 4:
Bài 11: Trong mp Oxy cho 2 điểm M(-2,1) và N(3,2). Gọi M’, N’ là ảnh của M, N qua phép v ị tự tâm O, tỉ số k=2. 
Tìm toạ độ của điểm M’, N’
Viết phương trình đường thẳng M’N’
O
M
M’
N
N’
x
y
-2
-4
1
3
6
2
4
Bài giải:
a) Ta cĩ 
Vậy M’(-4;2); N(6;4)
Ta cĩ là vectơ chỉ phương của đt M’N’
Vậy ptđt M’N’ là: 
Bài 12: Trong mp Oxy cho đường thẳng : x-2y+4=0
Tìm ảnh của :
 a) Qua phép tịnh tiến theo 
	b) Qua phép đối xứng trục Ox
	c) Phép đối xúng tâm I(2;1)
	d) Phép quay tâm O, gĩc quay 90o
 HD:
C1: Gọi M(x;y) : 
Ta cĩ: 
Mx-2y+4=0
x’+3-2(y’-5)+4=0
x’-2y’+17=0
	Vậy pt đường là: x-2y+17=0
 C2: HD:Lấy A(0;2) A’(-3;7)
Ta cĩ : cĩ dạng: x-2y+C=0 (*)
Thay toạ độ điểm A’ vào phương trình(*) ta cĩ: C=7
Vậy pt là: x-2y+17=0
 C3: Tương tự : lấy A(0;2) , B(4;0) 
Tìm . 
Viết phương trình đường thẳng A’B’. Đây là ảnh của qua phép tịnh tiến theo 
C1: Gọi M(x,y) . ĐOx(M)=M’(x’,y’)
Ta cĩ: 
M(x,y) x-2y+4=0
x’+2y’+4=0
M’ cĩ phương trình: x+2y+4=0
C2: Ta cĩ : A1= ĐOx(A) , B1= ĐOx(B)
Viết pt đt qua A1B1. Đây là ảnh của qua phép đối xứng trục Ox
ĐI(A) = A2 A2(4;0)
Đ(B) = B2 B2(8;-2)
(4;-2)
Pt đường thẳng A2B2 chính là ảnh của qua PI
Ptđt A2B2 là: 
d) 
Bài 13: Qua phép tịnh tiến theo biến điểm MM’
	 Qua phép ĐOx(M’)=M1
	CMR: Phép biến hình F biến MM1 theo quy tắc trên là một phép dời hình.
Bài giải:
	Gọi M(x,y), N(x1y1)
ĐOx(M’)=M1(x+a,-(y+b))
ĐOx(N’)=N1(x1+a,-(y1+b))
Ta cĩ :MN=M1N1
Vậy F(M)=M1, F(N)=N1 là phép dời.
C. BÀI TẬP VỀ NHÀ
BÀI TẬP TRẮC NGHIỆM:
Câu 1: Trong mp Oxy, cho đỉêm M(-4;7), điểm nào là ảnh của điểm M qua phép đối xứng trục Oy?
(-4;-7)
(7;-4)
(4;7)
(-7;4)
Câu 2: Trong mp Oxy, cho đỉêm M(3;-5), điểm nào là ảnh của điểm M qua phép đối xứng qua đường thẳng x-y=0?
(3;5)
(-5;3)
(-3;-5)
(5;-3)
Câu 3: Đường trịn bao nhiêu trục đối xứng?
Một
Hai
Ba
Vơ số
Câu 4: Trong mp Oxy, cho đường thẳng d: x-2y+5=0. Đường thẳng nào sau đây là ảnh của d qua phép ĐOx?
x+2y+5=0
x+2y-5=0
x-2y-5=0
2x+y-5=0
Câu 5: Trong mp Oxy, cho 2 điểm I(1;2) và M(-7;6), điểm nào là ảnh của M qua phép đối xứng tâm I?
(-6;8)
(9;-2)
(-8;4)
(-5;10)
Câu 6: Hình lục giác đều cĩ bao nhiêu tâm đối xứng?
Một
Ba
Sáu
Mười hai.
Câu 7: Trong mp Oxy, cho đường trịn (C): x2+y2+2x-10y+17=0, đường trịn nào sau đây là ảnh của đường trịn (C) qua phép đối xứng tâm O?
x2+y2+2x+10y+17=0
x2+y2-2x+10y+17=0 
x2-y2-2x+10y+17=0
-x2-y2+2x-10y+17=0
Câu 8: Trong mp Oxy, cho đường thẳng d: 2x-3y+4=0. Đường thẳng nào sau đây là ảnh của đường thẳng d qua phép đối xứng tâm I(2;1)?
2x+y-4=0
2x-3y+6=0
-2x-3y+4=0
2x-3y-6=0
Câu 9: Cĩ bao nhiêu phép tịnh tiến biến một đường trịn cho trước thành chính nĩ?
Khơng cĩ
Một
Hai
Vơ số
Câu 10: Trong mp Oxy, cho điểm I(-3;4), điểm nào là ảnh của I qua phép tịnh tiến theo ?
(5;-9)
(-1;-1)
(-5;-9)
(-1;1)
Câu 11: Trong mp Oxy, cho đường thẳng d: x-y-7=0. Đường thẳng nào sau đây cĩ thể là ảnh của đường thẳng d qua phép tịnh tiến?
2x-2y+1=0
2x+2y-7=0
X+y-7=0 
2x-y-1=0
Câu 12: Cĩ bao nhiêu phép tịnh tiến biến hình chữ nhật thành chính nĩ?
Khơng cĩ
Một
Hai
Bốn
Câu 13: Trong các mệnh đề sau, mệnh đề nào sai :
Phép dời hình là một phép đồng dạng
Phép vị tự là một phép đồng dạng
Phép đồng dạng là một phép dời hình 
Cĩ phép vị tự khơng là phép dời hình.
BÀI TẬP TỰ LUẬN :
Câu 1 : trong mpOxy cho phép tịnh tiến theo (1;-4) và đường thẳng 
 : x+3y-4 =

File đính kèm:

  • docCHUYEN DE PHEP DOI 11.doc