Chuyên đề Sử dụng tính đơn điệu để chứng minh, giải phương trình, bất phương trình
I. Định nghĩa : Cho hàm số y = f(x) xác định trong khoảng (a,b).
a) f tăng ( hay đồng biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 < x2 f(x1) < f(x2)
b) f giảm ( hay nghịch biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 < x2 f(x1) > f(x2)
II. Các tính chất :
1) Tính chất 1: Giả sử hàm số y = f(x) tăng (hoặc giảm) trên khoảng (a,b) ta có :
f(u) = f(v) u = v (với u, v (a,b) )
2) Tính chất 2: Giả sử hàm số y = f(x) tăng trên khoảng (a,b) ta có :
f(u) < f(v) u < v (với u, v (a,b) )
3) Tính chất 3: Giả sử hàm số y = f(x) giảm trên khoảng (a,b) ta có :
f(u) < f(v) u > v (với u, v (a,b) )
4) Tính chất 4:
Nếu y = f(x) tăng trên (a,b) và y = g(x) là hàm hằng hoặc là một hàm số giảm
trên (a,b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khỏang (a,b)
CÁC KIẾN THỨC CƠ BẢN ---------- I. Định nghĩa : Cho hàm số y = f(x) xác định trong khoảng (a,b). a) f tăng ( hay đồng biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 < x2 f(x1) < f(x2) b) f giảm ( hay nghịch biến ) trên khoảng (a,b) x1, x2 (a,b) : x1 f(x2) II. Các tính chất : 1) Tính chất 1: Giả sử hàm số y = f(x) tăng (hoặc giảm) trên khoảng (a,b) ta có : f(u) = f(v) u = v (với u, v (a,b) ) 2) Tính chất 2: Giả sử hàm số y = f(x) tăng trên khoảng (a,b) ta có : f(u) < f(v) u < v (với u, v (a,b) ) 3) Tính chất 3: Giả sử hàm số y = f(x) giảm trên khoảng (a,b) ta có : f(u) v (với u, v (a,b) ) 4) Tính chất 4: Nếu y = f(x) tăng trên (a,b) và y = g(x) là hàm hằng hoặc là một hàm số giảm trên (a,b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm thuộc khỏang (a,b) *Dựa vào tính chất trên ta suy ra : Nếu có x0 (a,b) sao cho f(x0) = g(x0) thì phương trình f(x) = g(x) có nghiệm duy nhất trên (a,b) BÀI TẬP ÁP DỤNG Bài 1 : Giải các phương trình sau : 1) 2) 3) Bài 2 : Giải các phương trình sau: 1) 3) Bài 3 : Giải các hệ : 1) với x, y (0,) 2) Bài 4: Giải các bất phương trình sau. 1) 5x + 12x > 13x 2) x (x8 + x2 +16 ) > 6 ( 4 - x2 ) Bài 5 : Chứng minh các bất đẳng thức sau : 1) ex > 1+x với x > 0 2) ln (1 + x ) 0 3) sinx 0 4) 1 - x2 < cosx với x 0 ------Hết-------
File đính kèm:
- chuyên đề sử dụng tính đơn điệu để CM, giải PT, BPT.doc