Chuyên đề Ôn thi Đại học - Phương trình, hệ phương trình, bất phương trình và hệ bất phương trình đại số - Phạm Ngọc Thụy

1) Hệ phương trình bậc nhất: Cách tính định thức

2) Hệ phương trình đối xứng loại 1: Hệ không thay đổi khi ta thay x bởi y và ngược lại

3) Hệ phương trình đối xứng loại 2: Nếu đổi vai trò của x và y thì phương trình này trở thành phương trình kia và ngược lại

4) Hệ phương trình đẳng cấp bậc 2: Xét 2 trường hợp, sau đó đặt x = ty

 

 

doc25 trang | Chia sẻ: lethuong715 | Lượt xem: 707 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Chuyên đề Ôn thi Đại học - Phương trình, hệ phương trình, bất phương trình và hệ bất phương trình đại số - Phạm Ngọc Thụy, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 dụ 5. 
Ví dụ 6. 
HD: Đặt t = log x , coi BPT đã cho là Bpt bậc 2 ẩn t; Chú ý so sánh 2 trường hợp t1, t2 
 ĐS (0;2] v (x≥ 4) 
Ví dụ 7. Giải bất phương trình 
Ví dụ 8. Giải bất phương trình: 
Ví dụ 9. Giải bất phương trình: 
Bài tập áp dụng
ĐK x, y≥ 1 ị ĐS: (1, 1) (9, 3) 
 KA 2004 	ĐS: (3; 4) 
	 	ĐS x = log23
Tìm a để hệ sau có nghiệm: 	HD: a>3/2
 Giải phương trình 
 Tìm m để phương trình có nghiệm thuộc khoảng (0;1) 
Chuyên đề 5. Tích phân xác định và ứng dụng
Đ1. Phương pháp tính tích phân
I. Tích phân các hàm số hữu tỉ
Ví dụ : Tính các tích phân sau
Bài tập
(CĐSP HN 2000): 
(ĐHNL TPHCM 1995) 
(ĐHKT TPHCM 1994) 
(ĐHNT HN 2000) 
(ĐHSP TPHCM 2000) 
(ĐHXD HN 2000) 
(ĐH MĐC 1995 )
(ĐHQG HN 1995). Xác định các hằng số A,B,C để Tính 
(ĐHTM 1995) 
(ĐH Thái Nguyên 1997) 
Xác định các hằng số A,B để Tính 
Cho hàm số 
Định các hệ số A,B,C,D,E sao cho
Tính 
II Tích phân các hàm số lượng giác
Ví dụ : Tính các tích phân sau
Bài tập
(ĐHQG TPHCM 1998) Tính :
(ĐHSP TPHCM 1995)
 Cho 
Tìm A,B sao cho 
 Tính 
 (ĐHGTVT TPHCM 1999)
 CMR 
Tính 
 (ĐHTS 1999) Tính : 
(ĐHTM HN 1995) Tính 
(HVKTQS 1999):Tính
(ĐHNN1 HN Khối B 1998) 
 (ĐHQGHN Khối A 1997) 
(ĐHNN1 HN 1998) Tính 
 (ĐHQG TPHCM 1998) 
 (HVNH TPHCM 2000) 
 (ĐHBK HN 1999) Cho hàm số 
Tìm A,B để 
Tính 
 (ĐHBK HN 1998) 
 (HVNH TPHCM 2000) 
III. Tích phân các hàm số vô tỉ
Ví dụ :	Tính các tích phân sau :
Bài tập
(HVNH THCM 2000) 
(ĐH BKHN 1995) 
(HVKTQS 1998) 
(ĐHAN 1999) 
(ĐHQG HN 1998) 
(ĐHSP2 HN 2000) 
(ĐHXD HN 1996) 
(ĐHTM 1997) 
(ĐHQG TPHCM 1998) 
IV. Một số dạng tích phân đặc biệt
Ví dụ1 :Tính các tích phân sau :
Ví dụ2 :Tính các tích phân sau
Ví dụ 3 :Tính các tích phân sau
Bài tập
(ĐHPCCC 2000) Tính 
(ĐHGT 2000 )Tính 
(ĐHQG HN 1994) Tính 
(ĐHNT TPHCM 1994)Tính 
(HVBCVTHN 1999)Tính 
Đ2. ứng dụng của tích phân xác định
Một số kiến thức cần nhớ
Nội dung các bài toán về diện tích hình phẳng: 3 bài toán cơ bản.
Bài toán về thể tích tròn xoay.
Các ví dụ 
Bài 1. Tính thể tích vật thể tròn xoay sinh ra bởi phép quay xung quanh trục ox của hình phẳng giới hạn bởi trục ox và đường .
Bài 2. Tính diện tích hình phẳng giới hạn bởi các đường: .
Bài 3. Tính diện tíc hình phẳng giới hạn bởi các đường: .
Bài 4. Tính diện tích hình phẳng giới hạn bởi (P) y2 = 16x và các tiếp tuyến tại A(1;4) B(4; - 8). 
Bài 1 Diện tích phẳng
(ĐHBKHN 2000): Tính diện tích giới hạn bởi 
(ĐHTCKT 2000): Tính diện tích giới hạn bởi 
(HVBCVT 2000) Tính diện tích giới hạn bởi 
(HVBCVT 1997) Tính diện tích giới hạn bởi 
(ĐHTM 1996) Tính diện tích giới hạn bởi 
(ĐHKT 1994) Tính diện tích giới hạn bởi 
(ĐHCĐ 1999) Tính diện tích giới hạn bởi 
(ĐHSP1 HN 2000) Tính diện tích giới hạn bởi 
(ĐHKTQD 1996) Tính diện tích giới hạn bởi hình phía dưới (P) : y=ax2 (a>0) và trên y=ax+2a
Tính diện tích giới hạn bởi và 2 tiếp tuyến tại các điểm A(0;-3) và B(3;0)
(ĐH Huế 1999) Tính diện tích giới hạn bởi 
Tính diện tích giới hạn bởi 
(HVQY 1997) Tính diện tích giới hạn bởi và tiếp tuyến với đường cong (C) tại điểm có hoành độ x=2
(ĐHKT 2000) Tính diện tích giới hạn bởi (C ) và Ox, hai đường thẳng có phương trình x=1; x=-1
*****Một số bài tham khảo************
Tính diện tích S giới hạn bởi đồ thị trục Ox và đường thẳng có phương trình x=2
Tính diện tích S giới hạn bởi đồ thị trục Ox và 2 đường thẳng có phương trình x=1 và x=3
Tính diện tích S giới hạn bởi đồ thị trục Ox và đường thẳng có phương trình x=2, y=x
Tính diện tích S giới hạn bởi đồ thị và đường thẳng có phương trình y=2x-2
Tính diện tích S giới hạn bởi đồ thị 
Bài 2 Thể tích của các vật thể
(ĐHNN1 HN 1997): Cho hình phẳng giới hạn bởi 
Tính diện tích hình phẳng giới hạn bởi D
Tính thể tích vật thể tròn xoay khi D quay quanh Ox 
Tính thể tích của vật thể tròn xoay sinh ra bởi phép quay quanh Ox của hình giới hạn bởi trục Ox và (P) y=x2-ax (a>0)
(ĐHXD 1997) Tính thể tích của vật thể tròn xoaydo hình phẳng 
(ĐHY 1999) Tính thể tích hình tròn xoay sinh ra bởi khi nó quay quanh Ox 
(ĐHTS TPHCM 2000): Cho hình phẳng G giới hạn bởi y= 4-x2; y=x2+2 .Quay hình phẳng (G) quanh Ox ta được một vật thể. Tính thể tích vật thể này
(HVQY 1997): Cho hình phẳng giới hạn bởi Tính thể tích vật thể tròn xoay khi D quay quanh trục Ox
(HVKTQS 1995) Tính thể tích do D quay quanh Ox 
Tính thể tích của vật thể tròn xoay sinh ra bởi phép quay quanh Ox của hình phẳng S giới hạn bởi các đường
 y=x.ex , x=1 , y=0 (0≤ x ≤ 1 ) 
(ĐHXD 1998) Tính thể tích vật thể tạo bởi hình quay quanh trục Oy
 (ĐHNN1 1999): Cho hình phẳng giới hạn bởi 
Tính diện tích hình phẳng giới hạn bởi D
Tính thể tích vật tròn xoay khi D quay quanh Ox
(ĐHKT 1996) : Cho hình phẳng giới hạn bởi 
Tính diện tích hình phẳng giới hạn bởi D
 Tính thể tích vật tròn xoay khi D quay quanh Ox
(ĐHPCCC 2000): Cho hàm số 
Khảo sát và vẽ đồ thị hàm số 
Viết phương trình tiếp tuyến kẻ từ 0(0,0) đến (C)
Tính thể tích giới hạn bởi (C) quay quanh Ox 
 Cho miền (H) giới hạn bởi đường cong y=sinx và đoạn 0≤ x ≤ p của trục Ox . Tính thể tích khối tròn xoay khi (H) quay quanh 
Trục Ox
Trục Oy
Chuyên đề 6: Đại số tổ hợp - Nhị thức newtơn
Đ1. Một số Bài toán áp dụng quy tắc nhân, cộng, 
hoán vị, tổ hợp, chỉnh hợp
1.1 Các bài toán chọn số:
* Ví dụ 1: Từ các chữ số 0,1,2,3,4,5,6 có thể lập được:
	a/	Bao nhiêu số tự nhiên gồm 5 chữ số khác nhau.
	b/	Bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau.
	c/	Bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó phải có mặt của số 5.
* Ví dụ 2: Với các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên thoả:
	a/	Gồm 8 chữ số từ các số trên.
	b/	Gồm 8 chữ số trong đó chữ số 1 có mặt 3 lần còn các chữ số khác có mặt đúng 1 lần.
* Ví dụ 3: Với các chữ số 1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó có hai chữ số 1 và 2 không đứng cạnh nhau.
* Ví dụ 4:Từ 10 chữ số 0,1,2,3,4,5,6,7,8,9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau sao cho :
	a/	Số đó chia hết cho 5.
	b/	Trong các chữ số đó có mặt của chữ số 0 và 1.
	c/	Nhỏ hơn 600000. 
* Ví dụ 5: Xét các hoán vị của 6 chữ số 1,2,3,4,5,6. Tính tổng S của tất cả các số tạo thành bởi các hoán vị này.
* Ví dụ 6: Từ các chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau và trong đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số cuối 1 đơn vị.
Bài tập
* Bài 1: Từ các chữ số 1,2,5,6,7,8 có thể lập được bao nhiêu số gồm 3 chữ số khác nhau từ 5 chữ số trên sao cho:
	a/	Số tạo thành là một số chẵn.
	b/	Số tạo thành không có mặt của chữ số 7.
	c/	Số tạo thành phải có mặt của chữ số 1 và 5.
	d/	Số tạo thành nhỏ hơn 278.
*Bài 2: Cho 8 chữ số 0,1,2,3,4,5,6,7.
	a/	Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau.
	b/	Có bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau.
	c/	Có bao nhiêu số tự nhiên chia hết cho 3 gồm 4 chữ số khác nhau .
*Bài 3: Cho tập 
	a/	Có bao nhiêu tập con X của A thoả điều kiện chứa 1 và không chứa 2.
	b/ Có bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau lấy từ tập A và không bắt đầu bởi số 123.
*Bài 4: Cho tập có thể lập được bao nhiêu số gồm 5 chữ số khác nhau lấy từ tập A sao cho:	a/	Số tạo thành là một số chẵn.
	b/	Một trong 3 chữ số đầu tiên phải bằng 1.
*Bài 5: Xét những số gồm 9 chữ số, trong đó có 5 chữ số 1 và 4 chữ số còn lại chọn từ 2,3,4,5. Hỏi có bao nhiêu số như vậy nếu
	a/	5 chữ số 1 xếp kề nhau.
	b/	Các chữ số được xếp tuỳ ý.
 *Bài 6: Cho 7 chữ số 0,2,4,5,6,8,9.
	a/	Có bao nhiêu số có 3 chữ số khác nhau lập từ các số trên.
	b/	Có bao nhiêu số có 4 chữ số khác nhau, trong đó nhất thiết phải có chữ số 5.
 *Bài 7: Từ 10 chữ số 0,1,2,3,4,5,6,7,8,9 có thể lập được bao nhiêu số gồm 7 chữ số thoả các điều kiện chữ số là số chẵn , không chia hết cho 5, các chữ số đôi một khác nhau.
 *Bài 8: Với các chữ số 0,1,2,3,4,5 ta có thể lập được bao nhiêu số :
	a/	Gồm 8 chữ số, trong đó chữ số 1 có mặt 3 lần, các chữ số khác có mặt 1 lần.
	b/	Gồm 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3.
 *Bài 9: Ta viết các số có 6 chữ số bằng các chữ số 1,2,3,4,5 . Trong đó mỗi số được viết có một chữ số được xuất hiện 2 lần còn các chữ số còn lại xuất hiện 1 lần. Hỏi có bao nhiêu số như vậy.
* Bài 10: Cho 7 chữ số 1,2,3,4,5,6,7. Xét tập E gồm 7 chữ số khác nhau viết từ các chữ số đã cho. Chứng minh rằng tổng S của tất cả các số của tập E chia hết cho 9.
1.2 Các bài toán chọn các đối tượng thực tế:
Dạng 1: Tìm số cách chọn các đối tượng thoả điều kiện cho trước.
* Ví dụ 1: Có 3 bông hồng vàng, 3 bông hồng trắng và 4 bông hồng đỏ ( các bông hoa xem như đôi 1 khác nhau) người ta muốn chọn ra một bó hoa gồm 7 bông.
	a/	Có bao nhiêu cách chọn các bông hoa được chọn tuỳ ý.
	b/	Có bao nhiêu cách chọn sao cho có đúng 1 bông màu đỏ.
	c/	Có bao nhiêu cách chọn sao cho có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ.
* Ví dụ 2: Một cuộc khiêu vũ có 10 nam và 6 nữ, người ta chọn có thứ tự 3 nam và 3 nữ để ghép thành 3 cặp. Hỏi có bao nhiêu cách chọn.
* Ví dụ 3: Một lớp học có 30 học sinh trong đó có 3 cán sự lớp.ần chọn 3 em trong 30 học sinh trên đi trực tuần sao cho trong 3 em được chọn luôn có 1 cán sự lớp. Hỏi có bao nhiêu cách chọn.
* Ví dụ 4:Một trường tiểu học có 50 học sinh tiên tiến, trong đó có 4 cạp anh em sinh đôi. Người ta cần chọn 3 học sinh trong 50 học sinh trên đi dự hội trại cấp thành phố sao cho không có cặp anh em sinh đôi nào được chọn. Hỏi có bao nhiêu cách chọn. 
* Ví dụ 5:Trong một môn học, giáo viên có 30 câu hỏi khác nhau gồm 5 câu khó , 10 câu trung bình và 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ 3 loại câu (khó, trung bình và dễ) đồng thời số câu dễ không ít hơn 2.
* Ví dụ 6: Trong mặt phẳng cho đa giác đều H có 20 cạnh. Xét các tam giác có 3 đỉnh được lấy từ các đỉnh của H.
	a/	Có bao nhiêu tam giác như vậy.
	b/	Có bao nhiêu tam giác có đúng 2 cạnh là cạnh của H.
	c/	Có bao nhiêu tam giác có đúng 1 cạnh là cạnh của H.
	d/	Có bao nhiêu tam giác không có cạnh nào là cạnh 

File đính kèm:

  • docCHUYEN DE ON THI DAI HOC.doc