Chuyên đề Hàm số đơn điệu trên tập con của R - Nguyễn Phú Khánh
* Ta có : y x x m ' 3 6 = + + 2 có ∆ = − ' 9 3m
i Nếu m ≥ 3 thì y x ' 0, ≥ ∀ ∈ , khi đó hàm số luôn đồng biến trên , do đó
m ≥ 3 không thoả yêu cầu bài toán .
i Nếu m < 3 , khi đó y ' 0 = có hai nghiệm phân biệt x x x x 1 2 1 2 , ( < ) và hàm số
nghịch biến trong đoạn x x 1 2 ; với độ dài l x x = − 2 1
Theo Vi-ét, ta có :
1 2 1 2 2,
m 3
x x x x + = − =
Hàm số nghịch biến trên đoạn có độ dài bằng 1 1 ⇔ = l
( ) ( ) 2 1 1 2 1 2 2 2 1 4 1 4 1 4 9
3 4
⇔ − = ⇔ + − = ⇔ − = ⇔ = x x x x x x m m .
Bài tập tương tự :
1. Tìm tất cả các tham số m để hàm số y x m x x m = − + + − 3 2 2 3 1 nghịch
biến trên đoạn có độ dài bằng 1?.
2. Tìm tất cả các tham số m để hàm số y x m x mx m = − + + + + 3 2 2 3 5 đồng
biến trên đoạn có độ dài bằng 3 ?.
Nguyễn Phú Khánh – Đà Lạt . 20 Dạng 4 : Hàm số đơn điệu trên tập con của . Phương pháp: * Hàm số ( , )y f x m= tăng x I∀ ∈ ' 0 min ' 0 x I y x I y ∈ ⇔ ≥ ∀ ∈ ⇔ ≥ . * Hàm số ( , )y f x m= giảm ' 0 max ' 0 x I x I y x I y ∈ ∀ ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ . Ví dụ 1 : Tìm m để các hàm số sau 1. 4mx y x m + = + luôn nghịch biến khoảng ( );1−∞ . 2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− . Giải : 1. 4mxy x m + = + luôn nghịch biến khoảng ( );1−∞ . * Hàm số đã cho xác định trên khoảng ( );1−∞ . * Ta có ( ) 2 2 4 ' , m y x m x m − = ≠ − + Hàm số nghịch biến trên khoảng ( );1−∞ khi và chỉ khi ( )( ) ' 0, ;1 ;1 y x m < ∀ ∈ −∞ − ∉ −∞ ( ) 2 4 0 2 2 2 2 2 1 1 1;1 m m m m m mm − < − < < − < < ⇔ ⇔ ⇔ ⇔ − < ≤ − − ≥ ≤ − − ∉ −∞ Vậy : với 2 1m− < ≤ − thì thoả yêu cầu bài toán . 2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− . * Hàm số đã cho xác định trên khoảng ( )1;1− . * Ta có : 2' 3 6 1y x x m= + + + Cách 1 : Hàm số đã cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi ( )' 0, 1;1y x≤ ∀ ∈ − hay. Xét hàm số ( ) ( ) ( )23 6 1 , 1;1g x x x x= − + + ∀ ∈ − ( ) ( ) ( )' 6 6 0, 1;1g x x x g x⇒ = − − < ∀ ∈ − ⇒ nghịch biến trên khoảng ( )1;1− và ( ) ( ) 1 1 lim 2, lim 10 x x g x g x + −→− → = − = − * Bảng biến thiên. Nguyễn Phú Khánh – Đà Lạt . 21 x 1− 1 ( )'g x − ( )g x 2− 10− Vậy 10m ≤ − thoả yêu cầu bài toán . Cách 2 : ( )'' 6 6f x x= + Nghiệm của phương trình ( )'' 0f x = là 1 1x = − < . Do đó, hàm số đã cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi ( ) 1 lim 10 x m g x −→ ≤ = − . Vậy 10m ≤ − thoả yêu cầu bài toán . Bài tập tự luyện: Tìm m để các hàm số sau: 1. 1mxy x m − = − luôn nghịch biến khoảng ( )2;+∞ . 2. ( ) 2 2 3 x m y m x m − = + − luôn nghịch biến khoảng ( )1;2 . 3. 2 2x m y x m − = − luôn nghịch biến khoảng ( );0−∞ . 4. ( ) 21 3 m x m y x m − + = + luôn nghịch biến khoảng ( )0;1 . Ví dụ 2 : Tìm m để các hàm số sau 1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ . 2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− . 3. ( ) ( )3 21 2 1 1 3 y mx m x m x m= + − + − + đồng biến trên khoảng ( )2;+∞ . Giải : 1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ . * Hàm số đã cho xác định trên khoảng ( )1;+∞ . * Ta có : 2' 6 4y x x m= − + Nguyễn Phú Khánh – Đà Lạt . 22 Hàm số đã cho đồng biến trên khoảng ( )1;+∞ khi và chỉ khi ( )' 0, 1;y x≥ ∀ ∈ +∞ ( ) 26 4 , 1g x x x m x⇔ = − ≥ − > Xét hàm số ( ) 26 4g x x x= − liên tục trên khoảng ( )1;+∞ , ta có ( ) ( )' 12 4 0, 1g x x x g x= − > ∀ > ⇔ đồng biến trên khoảng ( )1;+∞ và ( ) ( ) ( )2 1 1 lim lim 6 4 2, lim xx x g x x x g x + + →+∞→ → = − = = +∞ * Bảng biến thiên. x 1− +∞ ( )'g x + ( )g x +∞ 2− Dựa vào bảng biến thiên suy ra 2 2m m≥ − ⇔ ≥ − 2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− . * Hàm số đã cho xác định trên khoảng ( )3;0− . * Ta có : 2' 3 2 3y mx x= − + Hàm số đã cho đồng biến trên khoảng ( )3;0− khi và chỉ khi ' 0,y ≥ ( )3;0x∀ ∈ − . Hay ( ) ( )2 22 33 2 3 0, 3;0 , 3;03 x mx x x m x x − − + ≥ ∀ ∈ − ⇔ ≥ ∀ ∈ − Xét hàm số ( ) 22 33 x g x x − = liên tục trên khoảng ( )3;0− , ta có ( ) ( ) ( )2 46 18' 0, 3;09 x x g x x g x x − + = < ∀ ∈ − ⇒ nghịch biến trên khoảng ( )3;0− và ( ) ( ) 3 0 4 lim , lim 27x x g x g x + −→− → = − = −∞ * Bảng biến thiên. x 3− 0 ( )'g x − ( )g x 4 27 − −∞ Nguyễn Phú Khánh – Đà Lạt . 23 Dựa vào bảng biến thiên suy ra 4 27 m ≥ − 3. ( ) ( )3 21 2 1 1 3 y mx m x m x m= + − + − + đồng biến trên khoảng ( )2;+∞ . * Hàm số đã cho xác định trên khoảng ( )2;+∞ . * Ta có : ( )2' 4 1 1y mx m x m= + − + − Hàm số đồng biến trên khoảng ( )2;+∞ khi và chỉ khi ( ) ( ) ( )2' 0, 2; 4 1 1 0, 2;y x mx m x m x≥ ∀ ∈ +∞ ⇔ + − + − ≥ ∀ ∈ +∞ ( ) ( ) ( )2 2 4 14 1 4 1, 2; , 2;4 1xx x m x x m xx x+⇔ + + ≥ + ∀ ∈ +∞ ⇔ ≥ ∀ ∈ +∞+ + Xét hàm số ( ) ( )2 4 1 , 2;4 1 x g x x x x + = ∈ +∞ + + ( ) ( )( ) ( ) ( )22 2 2 1 ' 0, 2; 4 1 x x g x x g x x x − + ⇒ = < ∀ ∈ +∞ ⇒ + + nghịch biến trên khoảng ( )2;+∞ và ( ) ( ) 2 9 lim , lim 0 13 xx g x g x + →+∞→ = = Bảng biến thiên. x 2 +∞ ( )'g x − ( )g x 9 13 0 Vậy 9 13 m ≥ thoả yêu cầu bài toán . Bài tập tự luyện: Tìm m để các hàm số sau: 1. ( )2 1 1 2 mx m x y x m + + − = − đồng biến trên khoảng ( )1;+∞ . 2. ( ) ( ) ( )3 2 22 7 7 2 1 2 3y x mx m m x m m= − − − + + − − đồng biến trên khoảng ( )2;+∞ . Nguyễn Phú Khánh – Đà Lạt . 24 3. 3 21 ( 1) 3( 2) 1 3 y mx m x m x= − − + − + đồng biến trên khoảng (2; )+∞ . Ví dụ 3 : Tìm m để các hàm số sau : 1. 2 6 2 2 mx x y x + − = + nghịch biến trên nửa khoảng )2; +∞ . 2. 3 2 2( 1) (2 3 2) (2 1)y x m x m m x m m= − + − − + + − đồng biến trên nửa khoảng )1; +∞ . Giải : 1. 2 6 2 2 mx x y x + − = + nghịch biến trên nửa khoảng )2; +∞ . * Hàm số đã cho xác định trên nửa khoảng )2; +∞ * Ta có 2 2' 3 2( 1) (2 3 2)y x m x m m= − + − − + Hàm đồng biến trên nửa khoảng )2; +∞ . )' 0, 2;y x ⇔ ≥ ∀ ∈ +∞ )2 2( ) 3 2( 1) (2 3 2) 0, 2;f x x m x m m x ⇔ = − + − − + ≥ ∀ ∈ +∞ Vì tam thức ( )f x có 2' 7 7 7 0 m m m∆ = − + > ∀ ∈ nên ( )f x có hai nghiệm 1 2 1 ' 1 ' ; 3 3 m m x x + − ∆ + + ∆ = = . Vì 1 2 x x< nên 1 2 ( ) x x f x x x ≤ ⇔ ≥ . Do đó ) 2( ) 0 2; 2 ' 5f x x x m≥ ∀ ∈ +∞ ⇔ ≤ ⇔ ∆ ≤ − 2 2 5 5 3 2 2' (5 ) 2 6 0 m m m m m m ≤ ≤ ⇔ ⇔ ⇔ − ≤ ≤ ∆ ≤ − + − ≤ . 2. 3 2 2( 1) (2 3 2) (2 1)y x m x m m x m m= − + − − + + − đồng biến trên nửa khoảng )1; +∞ . * Hàm số đã cho xác định trên nửa khoảng )1; +∞ * Ta có 2 2 4 14 ' ( 2) mx mx y x + + = + Hàm nghịch biến trên nửa khoảng [1; )+∞ 2( ) 4 14 0f x mx mx⇔ = + + ≤ , ) ( )1; *x ∀ ∈ +∞ . Nguyễn Phú Khánh – Đà Lạt . 25 Cách 1: Dùng tam thức bậc hai • Nếu 0m = khi đó ( )* không thỏa mãn. • Nếu 0m ≠ . Khi đó ( )f x có 24 14m m∆ = − Bảng xét dấu ∆ m −∞ 0 7 2 +∞ '∆ + 0 − 0 + • Nếu 70 2 m ∀ ∈ , nếu ( )f x có hai nghiệm 1 2 ,x x thì ( ) 0f x ≤ 1 2 ( ; )x x x⇔ ∈ nên ( )* không thỏa mãn. • Nếu 0m < hoặc 7 2 m > . Khi đó ( ) 0f x = có hai nghiệm 2 2 1 2 2 4 14 2 4 14 ; m m m m m m x x m m − + − − − − = Vì 0m < hoặc 7 2 m > 1 1 2 2 ( ) 0 x x x x f x x x ≤ ⇒ < ⇒ ≤ ⇔ ≥ Do đó ) 22( ) 0 1; 1 3 4 14f x x x m m m≤ ∀ ∈ +∞ ⇔ ≤ ⇔ − ≥ − 2 0 14 55 14 0 m m m m < ⇔ ⇔ ≤ − + ≥ . Cách 2: ) 2 1 14 (*) ( ) 1; min ( ) 4 x m g x x m g x x x ≥ − ⇔ ≤ = ∀ ∈ +∞ ⇔ ≤ + Ta có 1 14 14 min ( ) (1) 5 5x g x g m ≥ = = − ⇒ ≤ − . Bài tập tự luyện : Tìm m để các hàm số sau : 1. ( )2 2 2x m x y x m + − − = + đồng biến trên nửa khoảng ( ;1−∞ . 2. ( ) ( )3 21 1 1 1 3 y x m x m x= + − − − + nghịch biến trên nửa khoảng ( ; 2−∞ − . Ví dụ 4 : Tìm tất cả các tham số m để hàm số 3 23y x x mx m= + + + nghịch biến trên đoạn có độ dài bằng 1?. Giải : * Hàm số đã cho xác định trên . Nguyễn Phú Khánh – Đà Lạt . 26 * Ta có : 2' 3 6y x x m= + + có ' 9 3m∆ = − i Nếu 3m ≥ thì ' 0,y x≥ ∀ ∈ , khi đó hàm số luôn đồng biến trên , do đó 3m ≥ không thoả yêu cầu bài toán . i Nếu 3m < , khi đó ' 0y = có hai nghiệm phân biệt ( )1 2 1 2,x x x x< và hàm số nghịch biến trong đoạn 1 2 ;x x với độ dài 2 1l x x= − Theo Vi-ét, ta có : 1 2 1 2 2, 3 m x x x x+ = − = Hàm số nghịch biến trên đoạn có độ dài bằng 1 1l⇔ = ( ) ( )2 22 1 1 2 1 2 4 91 4 1 4 13 4x x x x x x m m⇔ − = ⇔ + − = ⇔ − = ⇔ = . Bài tập tương tự : 1. Tìm tất cả các tham số m để hàm số 3 2 23 1y x m x x m= − + + − nghịch biến trên đoạn có độ dài bằng 1?. 2. Tìm tất cả các tham số m để hàm số 3 2 2 3 5y x m x mx m= − + + + + đồng biến trên đoạn có độ dài bằng 3 ?. Ví dụ 5: Tìm m để hàm số cosy x m x= + đồng biến trên . Giải: * Hàm số đã cho xác định trên . * Ta có ' 1 siny m x= − . Cách 1: Hàm đồng biến trên ' 0, 1 sin 0, sin 1, (1)y x m x x m x x⇔ ≥ ∀ ∈ ⇔ − ≥ ∀ ∈ ⇔ ≤ ∀ ∈ * 0m = thì (1) luôn đúng * 0m > thì 1 1(1) sin 1 0 1x x m m m ⇔ ≤ ∀ ∈ ⇔ ≤ ⇔ < ≤ . * 0m < thì 1 1(1) sin 1 1 0x x R m m m ⇔ ≥ ∀ ∈ ⇔ − ≥ ⇔ − ≤ < . Vậy 1 1m− ≤ ≤ là những giá trị cần tìm. Cách 2: Hàm đồng biến trên ' 0 y x⇔ ≥ ∀ ∈ 1 0 min ' min{1 ;1 } 0 1 1 1 0 m y m m m m − ≥ ⇔ = − + ≥ ⇔ ⇔ − ≤ ≤ + ≥ . Bài tập tự luyện: 1. Tìm m để hàm số ( )1 cosy x m m x= − + nghịch biến trên . 2. Tìm m để hàm số .sin cosy x x m x= + đồng biến trên . Nguyễn Phú Khánh – Đà Lạt . 27
File đính kèm:
- Chuong[1]-Bai[1]-Dang[4].pdf