Các sai lầm trong giải đề thi Tốt nghiệp môn Toán năm 2010

Gọi O là giao điểm của AC và BD. Vì ABCD là hình

vuông nên AO BD. (1)

Vì SA mp(ABCD) nên:

+ SA là đường cao của khối chóp S.ABCD;

+ SA BD. (2)

Từ (1) và (2) suy ra BD mp(SOA).

Do đó SO BD. (3)

Từ (1) và (3) suy ra SOA n là góc giữa mp(SBD) và

mp(ABCD). Do đó SOA n = 60o

pdf4 trang | Chia sẻ: lethuong715 | Lượt xem: 571 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Các sai lầm trong giải đề thi Tốt nghiệp môn Toán năm 2010, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 1
BỘ GIÁO DỤC VÀ ĐÀO TẠO 
ĐỀ THI CHÍNH THỨC 
KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2010 
Môn thi: TOÁN – Giáo dục trung học phổ thông 
HƯỚNG DẪN CHẤM THI 
(Văn bản gồm 04 trang) 
I. Hướng dẫn chung 
1) Nếu thí sinh làm bài không theo cách nêu trong đáp án nhưng đúng thì cho đủ số điểm 
từng phần như hướng dẫn quy định. 
2) Việc chi tiết hoá (nếu có) thang điểm trong hướng dẫn chấm phải đảm bảo không làm sai 
lệch hướng dẫn chấm và phải được thống nhất thực hiện trong toàn Hội đồng chấm thi. 
3) Sau khi cộng điểm toàn bài, làm tròn đến 0,5 điểm (lẻ 0,25 làm tròn thành 0,5; lẻ 0,75 
làm tròn thành 1,0 điểm). 
II. Đáp án và thang điểm 
CÂU ĐÁP ÁN ĐIỂM 
1. (2,0 điểm) 
a) Tập xác định: D = \ . 0,25 
b) Sự biến thiên: 
 • Chiều biến thiên: 'y = 23
4
x − 3x. Ta có: 
'y = 0 ⇔ 04xx =⎡ =⎢⎣ ; 'y > 0 ⇔ 
0
4
x
x
⎢⎣ và 'y < 0 ⇔ 0 < x < 4. 
 Do đó: 
 + Hàm số đồng biến trên mỗi khoảng ( ;0)−∞ và (4; );+∞ 
 + Hàm số nghịch biến trên khoảng (0; 4). 
0,50 
 • Cực trị: 
 + Hàm số đạt cực đại tại x = 0 và yC§ = y(0) = 5; 
 + Hàm số đạt cực tiểu tại x = 4 và yCT = y(4) = −3. 
0,25 
 • Giới hạn: lim ; lim
x x
y y→−∞ →+∞= −∞ = +∞ . 0,25 
Câu 1 
(3,0 điểm) 
 • Bảng biến thiên: 
0,25 
x − ∞ 0 4 +∞ 
 y’ + 0 − 0 +
 y 5 
 − 3 −∞ 
 +∞ 
 2
c) Đồ thị (C): 
0,50 
2. (1,0 điểm) 
Xét phương trình: 3 26 0x x m− + = (∗). Ta có: 
(∗) ⇔ 3 21 3 5 5 .
4 2 4
mx x− + = − 0,25 
Do đó: 
(∗) có 3 nghiệm thực phân biệt ⇔ đường thẳng 5
4
my = − cắt đồ thị (C) tại 3 điểm phân biệt 0,25 
 ⇔ −3 < 5 − 
4
m < 5 ⇔ 0 < m < 32. 0,50 
1. (1,0 điểm) 
Điều kiện xác định: x > 0. 
Với điều kiện đó, phương trình đã cho tương đương với phương trình 
2
2 22 log 7 log 3 0x x− + = 
0,50 
 ⇔ 2
2
log 3
1log
2
x
x
=⎡⎢ =⎢⎣
 0,25 
 ⇔ 8 2.
x
x
=⎡⎢ =⎣ 0,25 
Lưu ý: Nếu thí sinh chỉ tìm được điều kiện xác định của phương trình thì cho 0,25 điểm. 
2. (1,0 điểm) 
( )1 4 3 2
0
2 dI x x x x= − +∫ 0,25 
= 
1
5 4 3
0
1 1 1
5 2 3
x x x⎛ ⎞− +⎜ ⎟⎝ ⎠ 0,50 
= 1 .
30
 0,25 
3. (1,0 điểm) 
Câu 2 
(3,0 điểm) 
Trên tập xác định D = R của hàm số f(x), ta có: '( )f x = 
2
21
12
x
x
−
+
. 0,25 
5
− 3 
O x
y
6
4− 2
 3
Do đó: '( )f x ≤ 0 ⇔ 2 12 2x x+ ≤ 0,25 
 ⇔ 2 04
x
x
≥⎧⎨ ≥⎩ 0,25 
 ⇔ x ≥ 2. 0,25 
Gọi O là giao điểm của AC và BD. Vì ABCD là hình 
vuông nên AO ⊥ BD. (1) 
Vì SA ⊥ mp(ABCD) nên: 
+ SA là đường cao của khối chóp S.ABCD; 
+ SA ⊥ BD. (2) 
Từ (1) và (2) suy ra BD ⊥ mp(SOA). 
Do đó SO ⊥ BD. (3) 
Từ (1) và (3) suy ra nSOA là góc giữa mp(SBD) và 
mp(ABCD). Do đó nSOA = 60o. 
0,50 
Xét tam giác vuông SAO, ta có: 
SA = OA. ntan SOA = 
2
AC .tan60o = 2 .
2
a 3 = 6 .
2
a 0,25 
Câu 3 
(1,0 điểm) 
Vì vậy VS.ABCD = 1
3
SA. ABCDS = 13 . 
6 .
2
a 2a = 
3 6
6
a . 0,25 
1. (1,0 điểm) 
Gọi (P) là mặt phẳng đi qua A(1; 0; 0) và vuông góc với BC. 
Vì BC ⊥ (P) nên BCJJJG là một vectơ pháp tuyến của (P). 0,25 
Ta có: BC
JJJG
 = (0; − 2; 3). 0,25 
Do đó, phương trình của (P) là: −2y + 3z = 0. 0,50 
 2. (1,0 điểm) 
Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC. 
Vì O(0; 0; 0) ∈ (S) nên phương trình của (S) có dạng: 
x2 + y2 + z2 + 2ax + 2by + 2cz = 0. (∗) 
0,25 
Vì A(1; 0; 0), B(0; 2; 0), C(0; 0; 3) ∈ (S) nên từ (∗) ta được: 
1 2 0
4 4 0
9 6 0.
a
b
c
+ =⎧⎪ + =⎨⎪ + =⎩
Suy ra: a = 1
2
− ; b = − 1; c = 3 .
2
− 
0,50 
Vì vậy, mặt cầu (S) có tâm 1 3; 1;
2 2
I ⎛ ⎞= ⎜ ⎟⎝ ⎠ . 0,25 
Câu 4.a 
(2,0 điểm) 
Lưu ý: 
Thí sinh có thể tìm toạ độ của tâm mặt cầu (S) bằng cách dựa vào các nhận xét về tính chất 
hình học của tứ diện OABC. Dưới đây là lời giải theo hướng này và thang điểm cho lời giải đó:
B
A
C
D
O
S
 4
Tâm I của mặt cầu (S) là giao điểm của đường trục của đường tròn ngoại tiếp tam 
giác OAB và mặt phẳng trung trực của đoạn thẳng OC. 0,25 
Từ đó, vì tam giác OAB vuông tại O, các điểm A, B thuộc mp(Oxy) và điểm C thuộc 
trục Oz nên hoành độ, tung độ của I tương ứng bằng hoành độ, tung độ của trung 
điểm M của đoạn thẳng AB và cao độ của I bằng 1
2
 cao độ của C. 
0,50 
Ta có M = 1 ; 1; 0
2
⎛ ⎞⎜ ⎟⎝ ⎠ và C = (0; 0; 3) (giả thiết). Vì vậy 
1 3; 1;
2 2
I ⎛ ⎞= ⎜ ⎟⎝ ⎠ . 0,25 
Ta có 1 22 3 8 .z z i− = − + 0,50 Câu 5.a 
(1,0 điểm) Do đó, số phức 1 22−z z có phần thực bằng −3 và phần ảo bằng 8. 0,50 
1. (1,0 điểm) 
Từ phương trình của ∆ suy ra ∆ đi qua điểm M(0; −1; 1) và có vectơ chỉ phương G
u = (2; −2; 1). 
Do đó d(O, ∆) = ,MO u
u
⎡ ⎤⎣ ⎦
JJJJG G
G . 
0,50 
Ta có MO
JJJJG
 = (0; 1; −1). Do đó ( ), 1; 2; 2MO u⎡ ⎤ = − − −⎣ ⎦
JJJJG G
. 0,25 
Vì vậy d(O, ∆) = 
2 2 2
2 2 2
( 1) ( 2) ( 2)
2 ( 2) 1
− + − + −
+ − +
 = 1. 0,25 
2. (1,0 điểm) 
Gọi (P) là mặt phẳng chứa điểm O và đường thẳng ∆. 
Do vectơ ,n MO u⎡ ⎤= ⎣ ⎦
G JJJJG G
 có phương vuông góc với (P) nên n
G
 là một vectơ pháp 
tuyến của (P). 
0,50 
Câu 4.b 
(2,0 điểm) 
Suy ra phương trình của (P) là: −x − 2y − 2z = 0, hay x + 2y + 2z = 0. 0,50 
Ta có: 1 2.z z = 26 + 7i. 0,50 Câu 5.b 
(1,0 điểm) Do đó, số phức 1 2.z z có phần thực bằng 26 và phần ảo bằng 7. 0,50 
--------------- Hết --------------- 

File đính kèm:

  • pdfCác sai lầm trong giải đề thi TN 2010.pdf
Giáo án liên quan