Các phương pháp giải Hệ phương trình lượng giác
Các phương pháp giải Hệ phương trình lượng giác
Bạn đang xem nội dung tài liệu Các phương pháp giải Hệ phương trình lượng giác, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
(2) 2 2 + −⎧ =⎪⎪⇔ ⎨ + −⎪ =⎪⎩ Laáy (1) chia cho (2) ta ñöôïc: +⎛ ⎞ =⎜ ⎟⎝ ⎠ x y x ytg 1 (do cos 0 2 2 − = khoâng laø nghieäm cuûa (1) vaø (2) ) 2 4 2 2 2 2 + π⇔ = + π π π⇔ + = + π⇔ = − + π x y k x y k y x k thay vaøo (1) ta ñöôïc: sin x sin x k2 2 2 π⎛ ⎞+ − + π =⎜ ⎟⎝ ⎠ sin x cosx 2⇔ + = 2 cos 2 4 2 , 4 π⎛ ⎞⇔ −⎜ ⎟⎝ ⎠ π⇔ − = π ∈ = x x h h Do ñoù: heä ñaõ cho ( ) 2 , 4 2 , , 4 π⎧ = + π ∈⎪⎪⇔ ⎨ π⎪ = + − π ∈⎪⎩ x h h y k h k h Caùch 2: Ta coù A B A C B C D A C B D = + =⎧ ⎧⇔⎨ ⎨= − =⎩ ⎩ D+ − Heä ñaõ cho ( ) ( ) ( ) ( ) ⎧ − + − =⎪⇔ ⎨ + + − =⎪⎩ ⎧ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪⎪ ⎝ ⎠ ⎝ ⎠⇔ ⎨ π π⎛ ⎞ ⎛ ⎞⎪ + + + =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩ sin x cos x sin y cos y 0 sin x cos x sin y cos y 2 2 2 sin x 2 sin y 0 4 4 2 sin x 2 sin y 2 2 4 4 sin sin 0 4 4 sin sin 0 4 4 sin 1 4 sin sin 2 4 4 sin 1 4 2 4 2 2 4 2 sin sin 0 4 4 x y x y x x y y x k y h x y ⎧ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪⎧ π π ⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞ ⎪− + − =⎜ ⎟ ⎜ ⎟⎪ ⎪ π⎪ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞⇔ ⇔ + =⎨ ⎨ ⎜ ⎟π π ⎝ ⎠⎛ ⎞ ⎛ ⎞⎪ ⎪+ + + =⎜ ⎟ ⎜ ⎟⎪ ⎪ π⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎩ + =⎪ ⎜ ⎟⎝ ⎠⎩ ⎧ π π+ = + π⎪⎪ π π⎪⇔ + = + π⎨⎪⎪ π π⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩ π⎧ = + π⎪⎪⇔ ⎨ π⎪ = + π ∈⎪⎩ x k2 4 y h2 , h, k 4 Z Baøi 176: Giaûi heä phöông trình: − − =⎧⎪⎨ + = −⎪⎩ tgx tgy tgxtgy 1 (1) cos 2y 3 cos 2x 1 (2) Ta coù: tgx tgy 1 tgxtgy− = + ( ) 2 1 tgxtgy 0 tg x y 1 tgx tgy 0 1 tgxtgy 0 1 tg x 0 (VN) ⎧ + =− =⎧⎪ ⎪⇔ ∨ − =⎨ ⎨+ ≠⎪⎩ ⎪ + =⎩ (x y k k Z 4 π⇔ − = + π ∈ ) , vôùi x, y k 2 π≠ + π x y k 4 π⇔ = + + π, vôùi x, y k 2 π≠ + π Thay vaøo (2) ta ñöôïc: cos2y 3 cos 2y k2 1 2 π⎛ ⎞+ + + π = −⎜ ⎟⎝ ⎠ cos 2 3 s 2 1 3 1 1s 2 cos 2 sin 2 2 2 2 6 y in y in y y y ⇔ − = − π⎛ ⎞⇔ − = ⇔ −⎜ ⎟⎝ ⎠ 1 2 = ( )52 2 2 2 6 6 6 6 y h hay y h h Zπ π π π⇔ − = + π − = + π ∈ , , 6 2 ( loïai)y h h hay y h hπ π⇔ = + π ∈ = + π ∈ Do ñoù: Heä ñaõ cho ( ) ( ) 5 6 , 6 x k h h k Z y h π⎧ = + + π⎪⎪⇔ ∈⎨ π⎪ = + π⎪⎩ Baøi 177: Giaûi heä phöông trình 3 3 cos x cos x sin y 0 (1) sin x sin y cos x 0 (2) ⎧ − + =⎪⎨ − + =⎪⎩ Laáy (1) + (2) ta ñöôïc: 3 3sin x cos x 0+ = 3 3 3 sin x cos x tg x 1 tgx 1 x k (k 4 ⇔ = − ⇔ = − ⇔ = − π⇔ = − + π ∈ Z) Thay vaøo (1) ta ñöôïc: ( )3 2sin y cos x cos x cos x 1 cos x= − = − = =2 1cos x.sin x sin 2x sin x 2 π π⎛ ⎞ ⎛= − − +⎜ ⎟ ⎜⎝ ⎠ ⎝ 1 sin sin k 2 2 4 ⎞π⎟⎠ π⎛ ⎞= − − + π⎜ ⎟⎝ ⎠ 1 sin k 2 4 ⎧⎪⎪= ⎨⎪−⎪⎩ 2 (neáu k chaün) 4 2 (neáu k leû) 4 Ñaët 2sin 4 α = (vôùi 0 2< α < π ) Vaäy nghieäm heä ( )π π⎧ ⎧= − + π ∈ = − + + π ∈⎪ ⎪⎪ ⎪∨⎨ ⎨= α + π ∈ = −α + π ∈⎡ ⎡⎪ ⎪⎢ ⎢⎪ ⎪= π − α + π ∈ = π + α + π ∈⎣ ⎣⎩ ⎩ x 2m , m x 2m 1 , m 4 4 y h2 , h y 2h , h y h2 , h y h2 , h II. GIAÛI HEÄ BAÈNG PHÖÔNG PHAÙP COÄNG Baøi 178: Giaûi heä phöông trình: ( ) ( ) 1sin x.cos y 1 2 tgx.cotgy 1 2 ⎧ = −⎪⎨⎪ =⎩ Ñieàu kieän: cos x.sin y 0≠ Caùch 1: Heä ñaõ cho ( ) ( )1 1sin x y sin x y 2 2 sin x.cos y 1 0 cos x.sin y ⎧ + + − =⎡ ⎤⎣ ⎦⎪⎪⇔ ⎨⎪ − =⎪⎩ − ( ) ( ) ( ) ( ) ( ) + + − =⎧⎪⇔ ⎨ − =⎪⎩ − + + − =⎧⎪⇔ ⎨ − =⎪⎩ sin x y sin x y 1 sin x cos y sin y cos x 0 sin x y sin x y 1 sin x y 0 − ( ) ( ) + = −⎧⎪⇔ ⎨ − =⎪⎩ π⎧ + = − + π ∈⎪⇔ ⎨⎪ − = π ∈⎩ sin x y 1 sin x y 0 x y k2 , k 2 x y h , h ( ) ( ) π π⎧ = − + + ∈⎪⎪⇔ ⎨ π π⎪ = − + − ∈⎪⎩ ≠ x 2k h , k, h 4 2 y 2k h , k, h 4 2 (nhaän do sin y cos x 0) Caùch 2: ( ) sin x cos y2 1 cos xsin y ⇔ = ⇔ =sin x cos y cos x sin y ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( 1sin cos 3 2 1cos sin 4 2 sin 1 3 4 sin 0 3 4 Theá 1 vaøo 2 ta ñöôïc: x y x y x y x y ⎧ = −⎪⎪⎨⎪ = −⎪⎩ + = − +⎧⎪⇔ ⎨ − = −⎪⎩ ) ) 2 , 2 , x y k k x y h h π⎧ + = − + π ∈⎪⇔ ⎨⎪ − = π ∈⎩ ( ) ( ) ( ) 2 4 2 , 2 4 2 x k h h k Z y k h π π⎧ = − + +⎪⎪⇔ ∈⎨ π π⎪ = − + −⎪⎩ III. GIAÛI HEÄ BAÈNG AÅN PHUÏ Baøi 179: Giaûi heä phöông trình: ( ) ( ) 2 3 1 3 2 3cotg cotg 2 3 tgx tgy x y ⎧ + =⎪⎪⎨ −⎪ + =⎪⎩ Ñaët = =X tgx, Y tgy Heä ñaõ cho thaønh: 2 3 2 3X Y X Y 3 3 1 1 2 3 Y X 2 3 X Y 3 YX ⎧ ⎧+ = + =⎪ ⎪⎪ ⎪⇔⎨ ⎨ +⎪ ⎪+ = − = −⎪ ⎪⎩ ⎩ 3 2 2 3X Y2 3X Y 3 3 2 3XY 1 X X 1 0 3 X 3 3X 33Y Y 33 ⎧⎧ + =⎪+ =⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪= − − − =⎩ ⎪⎩ ⎧ ⎧= = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ Do ñoù: Heä ñaõ cho : tgx 3 3tgx 33tgy tgy 33 ⎧ ⎧= = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ , , 3 6 , , 6 3 π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= − + π ∈ = + π ∈⎪ ⎪⎩ ⎩ x k k x k k y h h y h h Baøi 180: Cho heä phöông trình: 1sin x sin y 2 cos2x cos2y m ⎧ + =⎪⎨⎪ + =⎩ a/ Giaûi heä phöông trình khi 1m 2 = − b/ Tìm m ñeå heä coù nghieäm. Heä ñaõ cho ( ) ( )2 2 1sin x sin y 2 1 2sin x 1 2sin y m ⎧ + =⎪⇔ ⎨⎪ − + −⎩ = ( ) ⎧ + =⎪⎪⇔ ⎨ −⎪ + =⎪⎩ ⎧ + =⎪⎪⇔ ⎨⎪ + − = −⎪⎩ 2 2 2 1sin x sin y 2 2 msin x sin y 2 1sin x sin y 2 msin x sin y 2sin xsin y 1 2 ⎧ + =⎪⎪⇔ ⎨⎪ − =⎪⎩ 1sin x sin y 2 1 m2sin xsin y 1 4 2 − ⎧ + =⎪⎪⇔ ⎨⎪ = − +⎪⎩ 1sin x sin y 2 3 msin xsin y 8 4 Ñaët X sin x,Y sin y vôùi X , Y 1= = ≤ thì X, Y laø nghieäm cuûa heä phöông trình ( )2 1 m 3t t 0 2 4 8 − + − = * a/ ( )= − 1Khim thì * thaønh : 2 − − = ⇔ − − = ⇔ = ∨ = − 2 2 1 1t t 0 2 2 2t t 1 0 1t 1 t 2 Vaäy heä ñaõ cho sin x 1 1sin x 21sin y sin y 12 =⎧ ⎧ = −⎪ ⎪⇔ ∨⎨ ⎨= −⎪ ⎪ =⎩ ⎩ 2 , ( 1) , 2 6 ( 1) , 2 , 6 2 π π⎧ ⎧= + π ∈ = − − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= − − + π ∈ = + π ∈⎪ ⎪⎩ ⎩ h h x k k x h h y h h y k k b/ Ta coù : ( ) 2m 1* t 4 2 ⇔ = − + + 3t 8 Xeùt ( ) [ ]2 1 3y t t C treânD 1,1 2 8 = − + + = − thì: 1y ' 2t 2 = − + 1y ' 0 t 4 = ⇔ = Heä ñaõ cho coù nghieäm ( ) [ ]* coù 2 nghieäm treân -1,1⇔ ( ) md y 4 ⇔ = caét (C) taïi 2 ñieåm hoặc tiếp xúc [ ]treân -1,1 ⇔ − ≤ ≤ ⇔ − ≤ ≤ 1 m 7 8 4 16 1 7m 2 4 Caùch khaùc 2( ) 8 4 3 2 0⇔ = − − + =ycbt f t t t m coù 2 nghieäm t1 , t2 thoûa 1 21 1⇔ − ≤ ≤ ≤t t / 28 16 0 (1) 1 2 0 ( 1) 9 2 0 11 1 2 4 ⎧Δ = − ≥⎪ = + ≥⎪⎪⇔ ⎨ − = + ≥⎪⎪− ≤ = ≤⎪⎩ m af m af m S 1 7 2 4 ⇔ − ≤ ≤m Baøi 181: Cho heä phöông trình: 2 2 sin x mtgy m tg y msin x m ⎧ + =⎪⎨ + =⎪⎩ a/ Giaûi heä khi m = -4 b/ Vôùi giaù trò naøo cuûa m thì heä coù nghieäm. Ñaët X sin x= vôùi X 1≤ Y tgy= Heä thaønh: ( ) ( ) 2 2 X mY m 1 Y mX m 2 ⎧ + =⎪⎨ + =⎪⎩ Laáy (1) – (2) ta ñöôïc: ( )2 2X Y m Y X 0− + − = ( ) ( )X Y X Y m 0 X Y Y m X ⇔ − + − = ⇔ = ∨ = − Heä thaønh ( )22 = −= ⎧⎧ ⎪⎨ ⎨ + − =+ = ⎪⎩ ⎩ Y m XX Y hay X m m X mX mX m ( ) ( )2 2 2 X Y Y m X X mX m 0 * X mX m m 0 * * = = −⎧ ⎧⎪ ⎪⇔ ∨⎨ ⎨+ − = − + − =⎪ ⎪⎩ ⎩ a/Khi m = -4 ta ñöôïc heä ( ) ( ) 22 Y 4 XX Y X 4X 20 0 voâ nghieämX 4X 4 0 X 2 loaïido X 1 Y 2 = − −= ⎧⎧ ⎪∨⎨ ⎨ + + =− + = ⎪⎩ ⎩ ⎧ = ≤⎪⇔ ⎨ =⎪⎩ Vaäy heä ñaõ cho voâ nghieäm khi m = 4. b/ Ta coù (*) 2X mX m 0 vôùi X 1⇔ + − = ≤ ( ) ( ) 2 2 X m 1 X X m domkhoâng laø nghieämcuûa * 1 X ⇔ = − ⇔ =− Xeùt [ ) ( ) 2 2 2 X X 2XZ treân 1,1 Z' 1 X 1 X − += − ⇒ =− − ; Z' 0 X 0 X 2= ⇔ = ∨ = Do ñoù heä ( ) 2 X Y X 1 X mX m 0 ⎧ = ≤⎪⎨ + − =⎪⎩ coù nghieäm m 0⇔ ≥ Xeùt (**): 2 2X mX m m 0− + − = Ta coù ( )2 2 2m 4 m m 3m 4mΔ = − − = − + 40 0 m 3 Δ ≥ ⇔ ≤ ≤ Keát luaän: Khi m thì (I) coù nghieäm neân heä ñaõ cho coù nghieäm 0≥ Khi < thì (I) voâ nghieäm maø (**) cuøng voâ nghieäm m 0 Δ(do < 0) neân heä ñaõ cho voâ nghieäm Do ñoù: Heä coù nghieäm m 0⇔ ≥ Caùch khaùc Heä coù nghieäm (*)hay ⇔ = + − =2f (X) X mX m 0 (**) coù nghieäm treân [-1,1] = − + − =2 2g(X) X mX m m 0 ( 1) (1) 0f f⇔ − ≤ 2 1 4 0 (1) 0 ( 1) 0 1 1 2 2 m m af hay af mS ⎧Δ = + ≥⎪ ≥⎪⎪⎨ − ≥⎪ −⎪− ≤ = ≤⎪⎩ hay ( 1) (1) 0g g− ≤ 2 2 2 2 3 4 ( 1) 1 0 ( 1) ( 1) 0 1 1 2 2 m m ag m hay ag m S m ⎧Δ = − + ≥⎪ 0− = + ≥⎪⎪⎨ = − ≥⎪⎪− ≤ = ≤⎪⎩ 1 2 0m⇔ − ≤ 2 1 4 0 1 2 0 2 2 m m hay m m ⎧Δ = + ≥⎪ − ≥⎨⎪− ≤ ≤⎩ hay m = 1 hay ≤ ≤ 40 m 3 m 0⇔ ≥ IV. HEÄ KHOÂNG MAÃU MÖÏC Baøi 182: Giaûi heä phöông trình: ⎧ π⎛ ⎞+ ⎜ ⎟⎪⎪ ⎝⎨ π⎛ ⎞⎪ + ⎜ ⎟⎪ ⎝ ⎠⎩ tgx cotgx =2sin y + (1) 4 tgy cotgy =2sin x - (2) 4 ⎠ Caùch 1: Ta coù: 2 2sin cos sin cos 2tg cotg = cos sin sin cos sin2 α α α + αα + α + = =α α α α α Vaäy heä ñaõ cho ⎧ π⎛ ⎞= +⎜ ⎟⎪ ⎝ ⎠⎪⇔ ⎨ π⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠⎩ 1 sin y (1) sin 2x 4 1 sin x (2) sin 2y 4 ⎧ π⎛ ⎞= +⎜ ⎟⎪⎪ ⎝⇔ ⎨ π⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠⎩ 1 sin 2x sin y (1) 4 1 sin 2y.sin x (2) 4 ⎠ Ta coù: (1) = =⎧ ⎧⎪ ⎪⇔ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞+ = + = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ sin 2x 1 sin 2x 1 sin y 1 sin y 1 4 4 − π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ x k , k x k , k 4 4 3y h2 , h y h2 , h 4 4 Thay π⎧ = + π ∈⎪⎪⎨ π⎪ = + π ∈⎪⎩ x k , k 4 y h2 , h 4 vaøo (2) ta ñöôïc sin2y.sin x sin .sin k 0 1 4 2 π π⎛ ⎞− = π = ≠⎜ ⎟⎝ ⎠ (loaïi) Thay −π⎧ = + π ∈⎪⎪⎨ π⎪ = − + π ∈⎪⎩ x k , k 4 3y h2 , h 4 vaøo (2) ta ñöôïc π π π⎛ ⎞ ⎛ ⎞ ⎛− = − − + π⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ 3sin 2y.sin x sin sin k 4 2 2 ⎞⎟⎠ ⎧π⎛ ⎞= − + π = ⎨⎜ ⎟ −⎝ ⎠ ⎩ 1 ( neáu k leû) sin k 2 1 (neáu k chaün) Do ñoù heä coù nghieäm ( ) ( ) π⎧ = − + + π⎪⎪ ∈ •⎨ π⎪ = − + π⎪⎩ x 2m 1 4 m,h Z 3y h2 4 Caùch 2: Do baát ñaúng thöùc Cauchy tgx cotgx 2+ ≥ daáu = xaûy ra 1tgx cotgx tgx= tgx ⇔ = ⇔ tgx 1⇔ = ± Do ñoù: tgx+cotgx 2 2sin y 4 π⎛ ⎞≥ ≥ +⎜ ⎟⎝ ⎠ Daáu = taïi (1) chæ xaûy ra khi = = −⎧ ⎧⎪ ⎪⇔ ∨π π⎨ ⎨⎛ ⎞ ⎛ ⎞+ = + = −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎩ π π⎧ ⎧= + π ∈ = − + π ∈⎪ ⎪⎪ ⎪⇔ ∨⎨ ⎨π π⎪ ⎪= + π ∈ = − + π ∈⎪ ⎪⎩ ⎩ tgx 1 tgx 1 sin y 1 sin y 1 4 4 x k , k x k , k 4 4(I) (II) 3y h2 , h y h2 , h 4 4 thay (I) vaøo (2): π⎛ ⎞+ ⎜ ⎟⎝ ⎠tgy cotgy=2sin x - 4 ta thaáy khoâng thoûa 2 2sink 0= π = thay (II) vaøo (2) ta thaáy π⎛ ⎞= − + π⎜ ⎟⎝ ⎠2 2sin k2 chæ thoûa khi k leû Vaäy: heä ñaõ cho ( )π⎧ = − + + π⎪⎪⇔ ∈⎨ π⎪ = − + π⎪⎩ x 2m 1 4 , m, h 3y 2h 4 Baøi 183: Cho heä phöông trình: ( ) 2 x y m (1) 2 cos2x cos2y 1 4 cos m 0 (2) − =⎧⎪⎨ + − − =⎪⎩ Tìm m ñeå heä phöông trình coù nghieäm. Heä ñaõ cho ( ) ( ) 2 x y m 4cos x y cos x y 1 4 cos m − =⎧⎪⇔ ⎨ + − = +⎪⎩ ( ) ( ) ( ) ( ) ( ) − =⎧⎪⇔ ⎨− + + + =⎪⎩ − =⎧⎪⇔ ⎨ − + + − +⎪⎩ − =⎧⎪⇔ ⎨ − + + + =⎪⎩ 2 2 2 2 2 x y m 4 cos x y cos m 4 cos m 1 0 x y m [2 cos m cos x y ] 1 cos x y 0 x y m [2 cos m cos
File đính kèm:
- Cac PP giai he phuong trinh luong giac(1).pdf