Bài tập tự luyện về khảo sát và vẽ đồ thị hàm số
Câu 5: Cho hàm số (C)
5.1. Viết phương tŕnh tiếp tuyến đi qua điểm M(2 ; 3) đến (C)
5.2. Viết phương tŕnh tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của 2 đường tiệm cận.
5.3. Viết phương tŕnh tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác có diện tích bằng 1.
5.4. Viết phương tŕnh tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác cân.
5.5. T́m điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ đạt GTNN
5.6. T́m điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 tiệm cận đạt GTNN
5.7. T́m 2 điểm A; B thuộc 2 nhánh của đồ thị hàm số sao cho AB min
BÀI LUYỆN TẬP VỀ HÀM SỐ Câu 1: Cho hàm số (C) 1.1. Khảo sát hàm số và vẽ đồ thị với m = 2. 1.2. T́m m để hàm đồng biến trên 1.3. T́m m để hàm số có CĐ, CT thỏa măn: a. b. Hoành độ các điểm cực trị lớn hơn -1 c. , với là hoành độ các điểm cực trị d. Có ít nhất 1 hoành độ cực trị thuộc khoảng (-2; 0) Câu 2: Cho hàm số . T́m m để hàm số có: 2.1. Cực trị và các điểm cực trị cách đều đường thẳng y = x – 1 2.2. Phương tŕnh đường thẳng đi qua các điểm cực trị song song với y = - 4x + 3 2.3. Phương tŕnh đường thẳng đi qua các điểm cực trị tạo với đường thẳng x + 4y – 5 = 0 một góc . 2.4. Các điểm cực trị đối xứng qua tâm 2.5. Các điểm cực trị đối xứng qua đường thẳng 2.6. Các điểm cực trị nằm về 2 phía đối với đường thẳng y = 4x + 5. 2.7. Có cực trị và chứng minh khoảng cách giữa 2 điểm cực trị lớn hơn . 2.8. Cực trị tại thỏa măn: . Câu 3: Cho hàm số 3.1. T́m m để hàm số chỉ có cực tiểu mà không có cực đại 3.2. T́m m để hàm số có 3 cực trị là 3 đỉnh của một tam giác: a. Vuông cân b. Đều c. Tam giác có diện tích bằng 4. 3.3. Viết phương tŕnh parabol đi qua 3 điểm cực trị. 3.4. T́m m để parabol đi qua 3 điểm cực trị đi qua điểm Câu 4: Cho hàm số . T́m tham số m để hàm số có: 4.1. Hai điểm cực trị nằm về hai phía trục tung; 4.2. Hai điểm cực trị cùng với gốc tọa độ O lập thành tam giác vuông tại O; 4.3. Hai điểm cực trị cùng với điểm M(0; 2) thẳng hàng; 4.4. Khoảng cách hai điểm cực trị bằng ; 4.5. Cực trị và tính khoảng cách từ điểm cực tiểu đến TCX. 4.6. Cực trị và thỏa măn: Câu 5: Cho hàm số (C) 5.1. Viết phương tŕnh tiếp tuyến đi qua điểm M(2 ; 3) đến (C) 5.2. Viết phương tŕnh tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của 2 đường tiệm cận. 5.3. Viết phương tŕnh tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác có diện tích bằng 1. 5.4. Viết phương tŕnh tiếp tuyến tại điểm , biết tiếp tuyến cắt 2 trục tọa độ tạo thành 1 tam giác cân. 5.5. T́m điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 trục tọa độ đạt GTNN 5.6. T́m điểm M thuộc (C) sao cho tổng khoảng cách từ M đến 2 tiệm cận đạt GTNN 5.7. T́m 2 điểm A; B thuộc 2 nhánh của đồ thị hàm số sao cho AB min 5.8. T́m m để (C) cắt đường thẳng tại 2 điểm phân biệt A, B: a. Thuộc 2 nhánh của đồ thị (C) b. Tiếp tuyến tại A, B vuông góc với nhau c. Thỏa măn đk Câu 6: Cho hàm số 6.1. Khảo sát và vẽ đồ thị hàm số khi m = 3 6.2. Dựa vào đồ thị hàm số, tùy theo m hăy biện luận số nghiệm của phương tŕnh: a. b. 6.3. CMR đồ thị hàm số luôn tiếp xúc với một đường thẳng cố định tại 1 điểm cố định. 6.4. Tiếp tuyến tại cắt 2 tiệm cận tại A, B. CMR M là trung điểm của AB 6.5. Cho điểm . Tiếp tuyến của tại M cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh diện tích tam giác AIB không đổi, I là giao của 2 tiệm cận. T́m M để chu vi tam giác AIB nhỏ nhất. 6.6. Mọi chứng minh tích khoảng cách từ M đến 2 tiệm cận không đổi. Câu 7: Cho hàm số (C) 7.1. T́m điểm trên trục hoành sao từ đó kẻ được 3 tiếp tuyến đến (C); 7.2. T́m m để hàm số tiếp xúc với đường thẳng y = mx; 7.3. T́m 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua tâm M(-1; 3); 7.4. T́m 2 điểm trên đồ thị hàm số sao cho chúng đối xứng nhau qua đt 2x – y + 2 = 0; 7.5. Biện luận theo m số nghiệm của phương tŕnh sau: a. b. 7.6. Chứng minh tiếp tuyến tại điểm uốn có hệ số góc lớn nhất. Câu 8: Cho hàm số (1) 8.1. T́m m để đường thẳng y = m cắt đồ thị hàm số (1) tại hai điểm A, B sao cho AB = 2 8.2. Chứng minh rằng đồ thị hàm số (1) nhận làm tâm đối xứng. 8.3. T́m m để đường thẳng d: và đường cong (1) cắt nhau tại A, B phân biệt sao cho M(2; 3) làm trung điểm của AB. 8.4. T́m trên đồ thị 2 điểm A, B thuộc 2 nhánh sao cho AB min. 8.5. Tính diện tích tam giác tạo bởi tiệm cận xiên và các trục tọa độ. Câu 9: Cho hàm số (C): và đường thẳng d: y = x + 2. T́m m để hàm số (C) cắt đường thẳng d: 9.1. Tại đúng 2 điểm phân biệt. 9.2. Tại 3 điểm phân biệt có hoành độ dương. 9.3. Tại 3 điểm phân biệt A, B, C sao cho AB = BC 9.4. Tại 3 điểm phân biệt lập thành cấp số nhân. Câu 10: Cho hàm số 10.1. T́m m để hàm số cắt Ox tại 4 điểm phân biệt lập thành cấp số cộng; 10.2. T́m m để hàm số cắt Ox tại 3 điểm phân biệt có hoành độ nhỏ hơn 3. .. Vũ Ngọc Vinh
File đính kèm:
- BI LUYỆN TẬP VỀ HM SỐ.doc