Bài tập Đại số 11 - Chương IV: Giới hạn
Khi tính các giới hạn dạng phân thức, ta chú ý một số trường hợp sau đây:
· Nếu bậc của tử nhỏ hơn bậc của mẫu thì kết quả của giới hạn đó bằng 0.
· Nếu bậc của từ bằng bậc của mẫu thì kết quả của giới hạn đó bằng tỉ số các hệ số của luỹ
thừa cao nhất của tử và của mẫu.
· Nếu bậc của tử lớn hơn bậc của mẫu thì kết quả của giới hạn đó là +oo nếu hệ số cao nhất
của tử và mẫu cùng dấu và kết quả là –oo nếu hệ số cao nhất của tử và mẫu trái dấu.
Giới hạn đặc biệt: 0 0limx x x x ® = ; 0 lim x x c c ® = (c: hằng số) 2. Định lí: a) Nếu 0 lim ( ) x x f x L ® = và 0 lim ( ) x x g x M ® = thì: [ ] 0 lim ( ) ( ) x x f x g x L M ® + = + [ ] 0 lim ( ) ( ) x x f x g x L M ® - = - [ ] 0 lim ( ). ( ) . x x f x g x L M ® = 0 ( )lim ( )x x f x L g x M® = (nếu M ¹ 0) b) Nếu f(x) ³ 0 và 0 lim ( ) x x f x L ® = thì L ³ 0 và 0 lim ( ) x x f x L ® = c) Nếu 0 lim ( ) x x f x L ® = thì 0 lim ( ) x x f x L ® = 3. Giới hạn một bên: 0 lim ( ) x x f x L ® = Û Û 0 0 lim ( ) lim ( ) x x x x f x f x L - +® ® = = 1. Giới hạn đặc biệt: lim k x x ®+¥ = +¥ ; lim k x neáu k chaünx neáu k leû®-¥ ì+¥= í-¥î lim x c c ®±¥ = ; lim 0 kx c x®±¥ = 0 1lim x x-® = -¥ ; 0 1lim x x+® = +¥ 0 0 1 1lim lim x xx x- +® ® = = +¥ 2. Định lí: Nếu 0 lim ( ) x x f x L ® = ¹ 0 và 0 lim ( ) x x g x ® = ±¥ thì: 0 0 0 lim ( ) lim ( ) ( ) lim ( ) x x x x x x neáu L vaø g x cuøng daáu f x g x neáu L vaø g x traùi daáu ® ® ® ì+¥ ï= í-¥ïî 0 0 0 0 0 lim ( ) ( )lim lim ( ) 0 . ( ) 0 ( ) lim ( ) 0 . ( ) 0 x x x x x x x x neáu g x f x neáu g x vaø L g x g x neáu g x vaø L g x ® ® ® ® ì = ±¥ ï ï= +¥ = >í ï-¥ = <ïî * Khi tính giới hạn có một trong các dạng vô định: 0 0 , ¥ ¥ , ¥ – ¥, 0.¥ thì phải tìm cách khử dạng vô định. Một số phương pháp khử dạng vô định: 1. Dạng 0 0 a) L = 0 ( )lim ( )x x P x Q x® với P(x), Q(x) là các đa thức và P(x0) = Q(x0) = 0 Phân tích cả tử và mẫu thành nhân tử và rút gọn. VD: 3 2 2 22 2 2 8 ( 2)( 2 4) 2 4 12lim lim lim 3 ( 2)( 2) 2 44x x x x x x x x x x x xx® ® ® - - + + + + = = = = - + +- b) L = 0 ( )lim ( )x x P x Q x® với P(x0) = Q(x0) = 0 và P(x), Q(x) là các biểu thức chứa căn cùng bậc Sử dụng các hằng đẳng thức để nhân lượng liên hợp ở tử và mẫu. VD: ( )( ) ( )0 0 0 2 4 2 4 2 4 1 1lim lim lim 42 42 4x x x x x x x xx x® ® ® - - - - + - = = = + -+ - c) L = 0 ( )lim ( )x x P x Q x® với P(x0) = Q(x0) = 0 và P(x) là biêåu thức chứa căn không đồng bậc Giả sử: P(x) = 0 0( ) ( ) ( ) ( )m n m nu x v x vôùi u x v x a- = = . Ta phân tích P(x) = ( ) ( )( ) ( )m nu x a a v x- + - . Trần Sĩ Tùng www.MATHVN.com www.mathvn.com Trang 5 VD: 3 3 0 0 1 1 1 1 1 1lim lim x x x x x x x x x® ® æ ö+ - - + - - - = +ç ÷ è ø = 0 2 33 1 1 1 1 5lim 3 2 61 1( 1) 1 1x xx x® æ ö + = + =ç ÷ç ÷+ -+ + + +è ø 2. Dạng ¥ ¥ : L = ( )lim ( )x P x Q x®±¥ với P(x), Q(x) là các đa thức hoặc các biểu thức chứa căn. – Nếu P(x), Q(x) là các đa thức thì chia cả tử và mẫu cho luỹ thừa cao nhất của x. – Nếu P(x), Q(x) có chứa căn thì có thể chia cả tử và mẫu cho luỹ thừa cao nhất của x hoặc nhân lượng liên hợp. VD: a) 2 2 2 2 5 32 2 5 3lim lim 2 6 36 3 1x x x x x x x x x x ®+¥ ®+¥ + - + - = = + + + + b) 2 2 322 3lim lim 1 11 1 1 x x x x x x x ®-¥ ®-¥ -- = = - + - - + - 3. Dạng ¥ – ¥: Giới hạn này thường có chứa căn Ta thường sử dụng phương pháp nhân lượng liên hợp của tử và mẫu. VD: ( ) ( )( )1 1 1lim 1 lim lim 0 1 1x x x x x x xx x x x x x®+¥ ®+¥ ®+¥ + - + + + - = = = + + + + 4. Dạng 0.¥: Ta cũng thường sử dụng các phương pháp như các dạng ở trên. VD: 22 2 2. 0. 2lim ( 2) lim 0 224x x x x xx xx+ +® ® - - = = = +- Baøi 1: Tìm các giới hạn sau: a) 2 3 0 1lim 1x x x x x® + + + + b) 2 1 3 1lim 1x x x x®- + - - c) 2 sin 4lim x x x® æ ö -ç ÷ è ø p p d) 41 1lim 3x x x x®- - + - e) 2 2 1lim 1x x x x® - + - f) 2 1 2 3lim 1x x x x® - + + g) 1 8 3lim 2x x x® + - - h) 3 2 2 3 4 3 2lim 1x x x x® - - - + i) 2 0 1lim sin 2x x ® Baøi 2: Tìm các giới hạn sau: a) 3 2 21 1lim 3 2x x x x x x® - - + - + b) x x x x 4 3 21 1lim 2 1® - - + c) 5 31 1lim 1x x x®- + + d) 3 2 4 23 5 3 9lim 8 9x x x x x x® - + + - - e) 5 6 21 5 4lim (1 )x x x x x® - + - f) 1 1lim 1 m nx x x® - - g) 0 (1 )(1 2 )(1 3 ) 1lim x x x x x® + + + - h) 2 1 ...lim 1 n x x x x n x® + + + - - i) 4 3 22 16lim 2x x x x®- - + www.MATHVN.com Trần Sĩ Tùng Trang 6 www.mathvn.com Baøi 3: Tìm các giới hạn sau: a) 22 4 1 3lim 4x x x® + - - b) 3 31 1lim . 4 4 2x x x® - + - c) 2 0 1 1lim x x x® + - d) 2 2 2lim 7 3x x x® + - + - e) 1 2 2 3 1lim 1x x x x® + - + - f) 2 0 2 1 1lim 16 4x x x® + - + - g) 30 1 1lim 1 1x x x® + - + - h) 23 3 2lim 3x x x x x®- + - + i) 0 9 16 7lim x x x x® + + + - Baøi 4: Tìm các giới hạn sau: a) 3 0 1 1lim x x x x® + - + b) 3 22 8 11 7lim 3 2x x x x x® + - + - + c) 3 0 2 1 8lim x x x x® + - - d) 3 20 1 4 1 6lim x x x x® + - + e) 3 22 8 11 7lim 2 5 2x x x x x® + - + - + f) 33 2 21 5 7lim 1x x x x® - - + - g) 0 1 4 . 1 6 1lim x x x x® + + - h) 3 0 1 2 . 1 4 1lim x x x x® + + - i) 3 0 1 1lim x x x x® + - - Baøi 5: Tìm các giới hạn sau: a) 2 2 1lim 2 1x x x x®+¥ + - + b) 22 1lim 2x x x x®±¥ - + - c) 2 3 2 2 1lim 3 2x x x x®+¥ + - + d) 2 2 2 3 4 1lim 4 1 2x x x x x x®±¥ + + + + + + - e) 2 2 4 2 1 2lim 9 3 2x x x x x x x®±¥ - + + - - + f) 2 1lim 1x x x x x®+¥ + + + g) 2 2 (2 1) 3lim 5x x x x x®-¥ - - - h) 2 2 2 3lim 4 1 2x x x x x x®+¥ + + + - + i) 2 5 2lim 2 1x x x x®-¥ - + + Baøi 6: Tìm các giới hạn sau: a) 2lim x x x x ®+¥ æ ö+ -ç ÷ è ø b) 2lim 2 1 4 4 3 x x x x ®+¥ æ ö- - - -ç ÷ è ø c) 32 3lim 1 1 x x x ®+¥ æ ö+ - -ç ÷ è ø d) lim x x x x x ®+¥ æ ö + + -ç ÷ è ø e) ( )3 3lim 2 1 2 1 x x x ®+¥ - - + f) ( )3 3 2lim 3 1 2 x x x ®-¥ - + + g) 31 1 3lim 1 1x x x® æ ö -ç ÷- -è ø h) 2 22 1 1lim 3 2 5 6x x x x x® æ ö +ç ÷ - + - +è ø Baøi 7: Tìm các giới hạn sau: a) 2 15lim 2x x x+® - - b) 2 15lim 2x x x-® - - c) 2 3 1 3 2lim 3x x x x+® + - - d) 2 2 4lim 2x x x+® - - e) 22 2lim 2 5 2x x x x+® - - + f) 22 2lim 2 5 2x x x x-® - - + Baøi 8: Tìm các giới hạn một bên của hàm số tại điểm được chỉ ra: a) 3 1 1 0 1 1( ) 0 3 0 2 x khi x xf x taïi x khi x ì + - >ïï + -= =í ï £ïî b) 29 3( ) 33 1 3 x khi xf x taïi xx x khi x ì -ï <= =í - ï - ³î Trần Sĩ Tùng www.MATHVN.com www.mathvn.com Trang 7 c) 2 3 4 2 2 8( ) 2 16 2 2 x x khi x xf x taïi x x khi x x ì - >ïï -= =í -ï <ï -î d) 2 2 3 2 1 1( ) 1 1 2 x x khi x xf x taïi x x khi x ì - + >ïï -= =í ï- £ïî Baøi 9: Tìm giá trị của m để các hàm số sau có giới hạn tại điểm được chỉ ra:: a) 3 1 1( ) 11 2 1 x khi xf x taïi xx mx khi x ì -ï <= =í - ï + ³î b) 3 2 2 1 3 1 ( ) 11 1 3 3 1 khi x f x taïi xx x m x mx khi x ì - >ï= =-í - ï - + £î c) 2 0 ( ) 0100 3 0 3 x m khi x f x taïi xx x khi x x ì + < ï= =í + + ³ï +î d) 2 3 1( ) 1 3 1 x m khi xf x taïi x x x m khi x ì + <- = = -í + + + ³-î www.MATHVN.com Trần Sĩ Tùng Trang 8 www.mathvn.com III. Hàm số liên tục 1. Hàm số liên tục tại một điểm: y = f(x) liên tục tại x0 Û 0 0lim ( ) ( )x x f x f x ® = · Để xét tính liên tục của hàm số y = f(x) tại điểm x0 ta thực hiện các bước: B1: Tính f(x0). B2: Tính 0 lim ( ) x x f x ® (trong nhiều trường hợp ta cần tính 0 lim ( ) x x f x +® , 0 lim ( ) x x f x -® ) B3: So sánh 0 lim ( ) x x f x ® với f(x0) và rút ra kết luận. 2. Hàm số liên tục trên một khoảng: y = f(x) liên tục tại mọi điểm thuộc khoảng đó. 3. Hàm số liên tục trên một đoạn [a; b]: y = f(x) liên tục trên (a; b) và lim ( ) ( ), lim ( ) ( ) x a x b f x f a f x f b + -® ® = = 4. · Hàm số đa thức liên tục trên R. · Hàm số phân thức, các hàm số lượng giác liên tục trên từng khoảng xác định của chúng. 5. Giả sử y = f(x), y = g(x) liên tục tại điểm x0. Khi đó: · Các hàm số y = f(x) + g(x), y = f(x) – g(x), y = f(x).g(x) liên tục tại x0. · Hàm số y = ( ) ( ) f x g x liên tục tại x0 nếu g(x0) ¹ 0. 6. Nếu y = f(x) liên tục trên [a; b] và f(a). f(b)< 0 thì tồn tại ít nhất một số c Î (a; b): f(c) = 0. Nói cách khác: Nếu y = f(x) liên tục trên [a; b] và f(a). f(b)< 0 thì phương trình f(x) = 0 có ít nhất một nghiệm cÎ (a; b). Mở rộng: Nếu y = f(x) liên tục trên [a; b]. Đặt m = [ ]; min ( ) a b f x , M = [ ]; max ( ) a b f x . Khi đó với mọi T Î (m; M) luôn tồn tại ít nhất một số c Î (a; b): f(c) = T. Baøi 1: Xét tính liên tục của hàm số tại điểm được chỉ ra: a) 3 1( ) 11 1 1 x khi xf x taïi xx khi x ì +ï ¹= = -í - ï- =î b) 3 2 1 1( ) 1 1 1 4 x khi x xf x taïi x khi x ì + - ¹ïï -= =í ï = ïî c) 2 3 2 2 7 5 2( ) 23 2 1 2 x x x khi xf x taïi xx x khi x ì - + -ï ¹= =í - + ï =î d) 2 5 5 ( ) 52 1 3 ( 5) 3 5 x khi x f x taïi xx x khi x ì - >ï= =í - - ï - + £î e) 1 cos 0( ) 0 1 0 x khi xf x taïi x x khi x ì - £ = =í + >î f) 1 1( ) 12 1 2 1 x khi xf x taïi xx x khi x ì - <ï= =í - - ï- ³î Baøi 2: Tìm m, n để hàm số liên tục tại điểm được chỉ ra: a) x khi xf x taïi x mx khi x 2 1( ) 1 2 3 1 ì <= =í - ³î b) x x x khi xf x taïi xx x m khi x 3 2 2 2 1( ) 11 3 1 ì - + -ï ¹= =í - ï + =î Trần Sĩ Tùng www.MATHVN.com www.mathvn.com Trang 9 c) m khi x x xf x khi x x taïi x vaø x x x n khi x 2 0 6( ) 0, 3 0 3 ( 3) 3 ì = ïï - - = ¹ ¹ = =í -ï =ïî d) x x khi xf x taïi xx m khi x 2 2 2( ) 22 2 ì - -ï ¹= =í - ï =î Baøi 3: Xét tính liên tục của các hàm số sau trên tập xác định của chúng: a) 3 3 2 1 1( ) 4 1 3 x x khi x xf x khi x ì + + ¹ -ïï += í ï = -ïî b) 2 3 4 2 ( ) 5 2 2 1 2 x x khi x f x khi
File đính kèm:
- BaiTapGIOIHAN-chuong4-DS11.pdf