Bài giảng Toán 6 - Tiết 34: Bội chung nhỏ nhất

Theo định nghĩa nêu cách tìm BCNN của hai hay nhiều số?

- Tìm tập hợp các bội của mỗi số.

- Tìm tập hợp bội chung của các số đó.

- Tìm số nhỏ nhất khác 0 trong tập hợp bội chung của các số.

 

ppt21 trang | Chia sẻ: Hải Khánh | Ngày: 19/10/2024 | Lượt xem: 27 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Bài giảng Toán 6 - Tiết 34: Bội chung nhỏ nhất, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chµo mõng c¸c thÇy c« gi¸o ®Õn dù giê líp 6B 
KIỂM TRA BÀI CŨ 
Thế nào là bội chung của hai hay nhiều số ? 
Tìm B(4); B(6); BC(4, 6) 
B(4) = {0; 4; 8; 12; 16; 20; 24; 28; 32; 36;} 
B(6) = {0; 6; 12; 18; 24; 30; 36;} 
BC(4, 6) = {0; 12; 24; 36; } 
0 
0 
12 
12 
24 
24 
36 
36 
Giải : 
12 
Số 12 là số nhỏ nhất khác 0 trong tập hợp các bội chung của 4 và 6 . 
Bội chung của hai hay nhiều số là bội của tất cả các số đó . 
12 là bội chung nhỏ nhất của 4 và 6 . 
Tiết 34: 
BỘI CHUNG NHỎ NHẤT 
Tiết 34: 
BỘI CHUNG NHỎ NHẤT 
1/ Bội chung nhỏ nhất . 
a ) Ví dụ 1 : Tìm BC(4, 6) 
B(4) = { 0 ; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;} 
B(6) = { 0 ; 6; 12 ; 18; 24 ; 30; 36 ;} 
BC(4, 6) = 
Kí hiệu : BCNN(4, 6) = 
Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất 
khác 0 trong tập hợp các bội chung của các số đó . 
b ) Định nghĩa : SGK/57 
Em hiểu thế nào là bội chung nhỏ nhất của hai hay nhiều số ? 
{0; 12 ; 24; 36; } 
12 
Có nhận xét gì về mối quan hệ giữa BC(4, 6) và BCNN(4, 6)? 
Tất cả các bội chung của 4 và 6 đều là bội của BCNN(4, 6) 
c) Nhận xét : SGK/57 
Tiết 34: 
BỘI CHUNG NHỎ NHẤT 
1/ Bội chung nhỏ nhất . 
a ) Ví dụ 1 : Tìm BC(4, 6) 
B(4) = { 0 ; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;} 
B(6) = { 0 ; 6; 12 ; 18; 24 ; 30; 36 ;} 
BC(4; 6) = {0; 12 ; 24; 36; } 
Kí hiệu : BCNN(4, 6) = 12 
b ) Định nghĩa : SGK/57 
c) Nhận xét : SGK/57 
Theo định nghĩa nêu cách tìm BCNN của hai hay nhiều số ? 
- Tìm tập hợp các bội của mỗi số . 
- Tìm tập hợp bội chung của các số đó . 
- Tìm số nhỏ nhất khác 0 trong tập hợp bội chung của các số . 
Nhận xét gì về BCNN(8,1) với 8; 
BCNN(4, 6, 1) với BCNN(4, 6)? 
* Tìm BCNN(8, 1) 
 B(8) = { 0 ; 8 ; 16 ; } 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8 ; 9; 10 } 
BC(8, 1) = {0; 8 ; 16; } 
BCNN(8, 1) = 8 
B(4) = { 0 ; 4; 8; 12 ; 16; 20; 24 ; 28; 32; 36 ;} 
B(6) = { 0 ; 6; 12 ; 18; 24 ; 30; 36 ;} 
* Tìm BCNN(4, 6, 1) 
 B(1) = { 0 ; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 ; } 
BC(4, 6, 1) = {0; 12 ; 24;} 
BCNN(4, 6, 1) = 12 
Áp dụng : Tìm BCNN(8, 1) và BCNN(4, 6, 1) 
BCNN(8, 1) = 8; 
BCNN(4, 6, 1) = BCNN(4, 6) 
Mọi số tự nhiên đều là bội của 1. Do đó , với mọi số tự nhiên a và b ( khác 0), ta có : 
BCNN(a , 1) = ; BCNN(a , b, 1) = 
a 
BCNN(a , b) 
Tiết 34: 
BỘI CHUNG NHỎ NHẤT 
1/ Bội chung nhỏ nhất . 
a) Ví dụ : Tìm BC(4, 6) 
BC(4; 6) = {0; 12; 24; 36; } 
BCNN(4, 6) = 12 
b) Định nghĩa : SGK/57 
c) Nhận xét : SGK/57 
d) Chú ý: SGK/ 58 
Mọi số tự nhiên đều là bội của 1.Do đó , với mọi số tự nhiên a và b ( khác 0), ta có : 
BCNN(a , 1) = a; BCNN(a , b, 1) = BCNN(a , b) 
Có cách nào tìm BCNN của hai hay nhiều số mà không cần liệt kê bội chung của các số hay không ? 
Tiết 34: 
BỘI CHUNG NHỎ NHẤT 
2/ Tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố . 
a)Ví dụ 2: 
BCNN (8, 18, 30) = 
= 360 
Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau : 
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố . 
Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng . 
Phân tích mỗi số ra thừa số nguyên tố 
Chọn ra các thừa số nguyên tố chung và riêng . 
Tính tích các thừa số đã chọn , mỗi thừa số lấy số mũ lớn nhất của nó 
Bước 3 : Lập tích các thừa số đã chọn , mỗi thừa số lấy số mũ lớn nhất của nó . Tích đó là BCNN phải tìm . 
 Tìm BCNN (8, 18, 30) 
b) Quy tắc : SGK/58 
Bµi tËp : § iÒn vµo chç trèng (  ) néi dung thÝch hîp ®Ó s¸nh hai quy t¾c: 
Muèn t×m BCNN cña hai hay nhiÒu sè .... ta lµm nh ­ sau : 
+ Ph©n tÝch mçi sè  
+ Chän ra c¸c thõa sè  
+ LËp  mçi thõa sè lÊy víi sè mò .. 
Muèn t×m ¦CLN cña hai hay nhiÒu sè .. ta lµm nh ­ sau : 
+ Ph©n tÝch mçi sè .. 
. 
+ Chän ra c¸c thõa sè  
+ LËp .... mçi thõa sè lÊy víi sè mò  
lín h¬n 1 
lín h¬n 1 
ra thõa sè nguyªn tè 
ra thõa sè nguyªn tè 
nguyªn tè chung vµ riªng 
nguyªn tè chung 
tÝch c¸c thõa sè ®· chän 
tÝch c¸c thõa sè ®· chän 
lín nhÊt 
nhỏ nhÊt 
chung vµ riªng 
chung 
lín nhÊt 
nhỏ nhÊt 
So s¸nh hai quy t¾c t×m BCNN vµ t×m ¦CLN ? 
Giống nhau bước 1 
Khác nhau bước 2 chỗ nào nhỉ ? 
Lại khác nhau ở bước 3 chỗ nào ? 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
Tìm BCNN (8, 12); BCNN(5, 7, 8); BCNN(12, 16, 48) 
a) 8 = 2 3 
 12 = 2 2 . 3 
BCNN(8, 12) = 2 3 . 3 = 24 
c) 12 = 2 2 . 3 
 16 = 2 4 
 48 = 2 4 . 3 
BCNN(12, 16, 48) = 2 4 . 3 = 48 
b) 5 = 5 
 7 = 7 
 8 = 2 3 
BCNN(5, 7, 8) = 5 . 7. 2 3 = 5 . 7 . 8 = 280 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
Tìm BCNN (8, 12); BCNN(5, 7, 8); BCNN(12, 16, 48) 
a) 8 = 2 3 
 12 = 2 2 . 3 
BCNN(8, 12) = 2 3 . 3 = 24 
c) 12 = 2 2 . 3 
 16 = 2 4 
 48 = 2 4 . 3 
BCNN(12, 16, 48) = 2 4 . 3 = 48 
b) 5 = 5 
 7 = 7 
 8 = 2 3 
BCNN( 5 , 7, 8 ) = 5 . 7 . 2 3 = 5 . 7 . 8 = 280 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
c) Chú ý: 
a/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó . 
Ví dụ : Ba số 5; 7; 8 không có thừa số nguyên tố chung nên BCNN(5, 7, 8) = 5.7.8 = 280 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
Tìm BCNN (8, 12); BCNN(5, 7, 8); BCNN(12, 16, 48) 
a) 8 = 2 3 
 12 = 2 2 . 3 
BCNN(8, 12) = 2 3 . 3 = 24 
c) 12 = 2 2 . 3 
 16 = 2 4 
 48 = 2 4 . 3 
BCNN(12, 16, 48) = 2 4 . 3 = 48 
b) 5 = 5 
 7 = 7 
 8 = 2 3 
BCNN(5, 7, 8) = 2 3 . 5 . 7 = 8 . 5 . 7 = 280 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
Tìm BCNN (8, 12); BCNN(5, 7, 8); BCNN(12, 16, 48) 
a) 8 = 2 3 
 12 = 2 2 . 3 
BCNN(8, 12) = 2 3 . 3 = 24 
c) 12 = 2 2 . 3 
 16 = 2 4 
 48 = 2 4 . 3 
BCNN(12, 16, 48 ) = 2 4 . 3 = 48 
b) 5 = 5 
 7 = 7 
 8 = 2 3 
BCNN(5, 7, 8) = 2 3 . 5 . 7 = 8 . 5 . 7 = 280 
BỘI CHUNG NHỎ NHẤT 
Tiết 34 : 
c) Chú ý: 
a/ Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó . 
Ví dụ : Ba số 5; 7; 8 không có thừa số nguyên tố chung nên BCNN(5, 7, 8) = 5.7.8 = 280 
b/ Trong các số đã cho , nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy . 
Ví dụ : Ta có số 48 chia hết cho cả 12 và 16 nên 
 BCNN(12, 16, 48) = 48. 
a) 60 = 2 2 .3.5 
 280 = 2 3 .5.7 
BCNN(60, 280) = 2 3 .3.5.7 = 840 
b) 84 = 2 2 .3.7 
 108 = 2 2 .3 3 
BCNN(84, 108) = 2 2 .3 3 .7 = 756 
Bài 149 (SGK/59). Tìm BCNN của : 
a) 60 và 280; b) 84 và 108; c) 13 và 15 
Giải 
c) BCNN(13, 15) = 13.15 = 195 
Nhóm 1, 2 
Tìm BCNN(24, 40, 168) 
Nhóm 3, 4 
Tìm BCNN(42, 70, 180) 
Hoạt động nhóm 
Giải 
Giải 
24 = 2 3 .3 
40 = 2 3 .5 
168 = 2 3 .3.7 
BCNN(24, 40, 168) = 2 3 .3.5.7= 840 
42 = 2.3.7 
70 = 2.5.7 
180 = 2 2 .3 2 .5 
BCNN(60, 280) = 2 2 .3 2 .5.7 = 1260 
 * Tr­íc hÕt h·y xÐt xem c¸c sè cÇn t×m BCNN cã r¬i vµo mét trong ba tr­êng hîp ® Æc biÖt sau hay kh«ng : 
 1) NÕu trong c¸c sè ®· cho cã mét sè b»ng 1 
th × BCNN cña c¸c sè ®· cho b»ng BCNN cña c¸c sè cßn l¹i 
 2) NÕu sè lín nhÊt trong c¸c sè ®· cho lµ béi cña c¸c sè cßn l¹i 
 th × BCNN cña c¸c sè ®· cho chÝnh lµ sè lín nhÊt Êy . 
3) NÕu c¸c sè ®· cho tõng ®«i mét nguyªn tè cïng nhau 
C¸ch 1: Dùa vµo ® Þnh nghÜa BCNN. 
th × BCNN cña c¸c sè ®· cho b»ng tÝch cña c¸c sè ® ã . 
1. Béi chung nhá nhÊt lµ sè nh ­ thÕ nµo ? 
§Ó t×m BCNN cña hai hay nhiÒu sè ta cÇn l­u ý: 
* NÕu kh«ng r¬i vµo ba tr­êng hîp trªn khi ® ã ta sÏ lµm theo mét trong hai c¸ch sau : 
C¸ch 2: Dùa vµo quy t¾c t×m BCNN. 
2. C¸ch t×m BCNN: 
 HiÓu vµ n¾m v÷ng quy t¾c t×m BCNN cña hai hay nhiÒu sè . 
- So s¸nh hai quy t¾c t×m BCNN vµ t×m ¦CLN. 
 Lµm bµi tËp 150; 151 (SGK/59) 
H­íng dÉn vÒ nh µ 
Chào tạm biệt 

File đính kèm:

  • pptbai_giang_toan_6_tiet_34_boi_chung_nho_nhat.ppt