Ba phương pháp cơ bản Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, biểu thức
B.NỘI DUNG PHƯƠNG PHÁP .
Nội dung bài viết này chỉ nêu lên ba phương pháp cơ bản nhất mà ta thường sử dung để tìm
giá trị lớn nhất, giá trị nhỏ nhất của một hàm số hay biểu thức nào đó. Tuỳ theo bài toán cụ
thể mà ta có thể sử dụng một trong ba phương pháp trên một cách tối ưu hơn.( Đôi lúc có
nhiều bài sử dụng vectơ, phương pháp tọa độ, lượng giác hóa )
Lưu ý: Khi tìm giá trị lớn nhất , giá trị nhỏ nhất ta luôn chỉ ra trường hợp đẳng thức xảy
ra.
Ta hay nhầm lẫn trong trường hợp đánh giá không đúng cho một bất đẳng thức.
Ví dụ trên, nếu không thận trọng ta nói : y= (x + 1)2 + (x – 3)2 ≥ 0 thì hỏng rồi!
t t = sinx + cosx. Dùng phương pháp đạo hàm để giải Ví dụ 2.Tìm giá trị lớn nhất và giá trị nhỏ nhất 4sincos2 3sin2cos +− ++= xx xxS trong khoảng ( );π π− . HD.cách 1.(PT). Để tồn tại giá trị S thì phương trình 4sincos2 3sin2cos +− ++= xx xxS phải có nghiệm xSxSS cos)21(sin)2(34 −++=−⇔ có nghiệm 2 11 2)34()21()2( 222 ≤≤⇒−≥−++⇒ SSSS . Cách 2.( ĐH). Đặt 2 2 2 1 1cos; 1 2sin 2 t tx t txxtgt + −=+=⇒= .Biến đổi S thành hàm số hữu tỉ ẩn t.Dùng phương pháp đạo hàm hoặc điều kiện phương trình bậc hai có nghiệm ,suy ra kết quả. Ví dụ 3. Tìm gíá trị lớn nhất của biểu thức : 22 2.2 xxxxf −+−+= . HD.cách 1(ĐH).Dùng đạo hàm trực tiếp ,chú ý hàm số liên tục trong đoạn [ ]2;2− . Cách 2.Đặt tkieänñieàuxxt ⇒−+= 22 .Dùng phương pháp đạo hàm, hoặc PT Cách 3.( Vevtơ). Đặt );2;1(),2;1;( 22 xxvxxu −=−= 22 2.2. xxxxvu −+−+=⇒ và 33.3..)2(1.)2(1. 2222 ==+−+−++= xxxxvu Ta có : vuvu .. ≤ 32.2 22 ≤−+−+⇔ xxxx . Đẳng thức xảy ra khi 1 2 21 2 2 =⇒ ⎪⎪⎩ ⎪⎪⎨ ⎧ =− −= = x kxx xk kx . Ví dụ 4. Cho hai số thực x , y thay đổi và thỏa mãn điều kiện: 24.)1.( xyyx −=− . Tìm giá trị lớn nhất, giá trị nhỏ nhất của tỉ số y x . HD.Điều kiện .Để tồn tại giá trị lớn nhất và nhỏ nhất của 22 ≤≤− x y x thì 0;0 ≠≠ yx Biến đổi ( )22 44.)1.( xx y xxyyx −+=⇔−=− Đặt h y x = . )0( ≠h .Biểu thức viết lại : 24 xxh −+= là một hàm số liên tục trong đoạn [ ]2;2− . Ví dụ 5.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : 22 22 yxyx yxyxS ++ +−= ( )Ryx ∈, . HD. Lí luận 0≠x chia tử và mẫu cho x2 .Đặt x yt = .Khảo sát hàm số S ẩn t,hoặc đkpt. Ví dụ 6. Cho các số thực x,y thoả mãn điều kiện: x2 + y2 = 1 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức : 322 124 2 2 +− −+= yxy xyxS . HD.Cách 1.Thế điều kiện x2 + y2 = 1 vào S giải như bài trên. Cách 2.Đặt αα cossin =⇒= yx . Đưa hàm số S= )2cos,2(sin ααS .Dùng đkpt. Ví dụ 7.Cho hai số thực x,y thay đổi và thỏa mãn điều kiện : x0≠ 2 + y2 = 2x2y + y2x . Tính giá trị lớn nhất , giá trị nhỏ nhất của biểu thức yx S 12 += . HD.Đặ y = tx, thế vào điều kiện và biểu thức S ,khảo sát hàm số S ẩn t . Ví dụ 8. Cho hai số thực dương x,y thoả điều kiện :x+y = 1. Tính giá trị nhỏ nhất của biểu thức : . 11 y y x xf −+−= HD.Đặt ,αα 22 cossin =⇒= yx ⎥⎦ ⎤⎢⎣ ⎡∈ 2 ;0 πα . Ví dụ 9.Tìm giá trị nhỏ nhất của hàm số : 2 sin)( 2xxexf x +−= . HD.Dùng phương pháp đạo hàm. Ví dụ 10.(1993 bảng A) .Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số )20092007()( 2xxxf −+= trong miền xác định của nó. Lời giải :Miền xác định của hàm số [ ]2009;2009−=D .Nhận thấy f(x) là hàm số lẻ nên ta xét hàm số trong [ ]2009;0'=D .Áp dụng bất đẳng thức BCS ta có 222 20092007.2010.)2009.1.2007.2007()20092007()( xxxxxxxf −+≤−+=−+= 2008.2008 2 20092007.2008 22 =−++≤ xx . Vậy GTLN = 2008.2008 khi và chỉ khi 2008=x GTNN= 2008.2008− khi và chỉ khi 2008−=x . Ví dụ 10.Tìm giá trị nhỏ nhất của biểu thức :Q = sin2A + sin2B – sin2C trong đó A,B,C là ba góc của một tam giác . HD.(BĐT). Đưa về tổng bình phương . Hoặc đưa về một biến x = sin 2 C . Dùng phương pháp ĐH để giải. Ví dụ 11.Tìm giá trị nhỏ nhất của biểu thức: 2 sin 1 2 sin 1 2 sin 1 222 CBA S ++= . Ví dụ 12. Tìm giá trị nhỏ nhất của biểu thức: ⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ += 3 cos 3 cos 3 cos πππ CBAS . HD.Chú ý .Dùng phương pháp giải như báo Toán học ,Tuổi trẻ (tháng 3-20007). Giải bài 12.Cách 1.Giả sử { }CBAMaxA ;;= 0 32 cos 3 <⎟⎠ ⎞⎜⎝ ⎛ ++⇒≥⇒ ππ BAA ,ta có: ⎟⎠ ⎞⎜⎝ ⎛ ++≥⎟⎠ ⎞⎜⎝ ⎛ −⎟⎠ ⎞⎜⎝ ⎛ ++=⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + 32 cos2 2 cos 32 cos2 3 cos 3 cos ππππ BABABABA .(1) Có dạng ⎟⎠ ⎞⎜⎝ ⎛ +≥+ 2 2)()( BAfBfAf . Tương tự ⎟⎟ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎜⎜ ⎝ ⎛ + + ≥⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + 32 3cos2 33 cos 3 cos π π πππ CC (2). Cộng (1) và (2) ta có : 3 2cos4 33 cos 3 cos 3 cos 3 cos ππππππ ≥⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + CBA 2 3 3 2cos3 3 cos 3 cos 3 cos −=≥⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ += ππππ CBAS . Cách 2.Giả sử { }CBAMaxA ;;= 0 32 cos 3 <⎟⎠ ⎞⎜⎝ ⎛ ++⇒≥⇒ ππ BAA ,ta có: ⎟⎠ ⎞⎜⎝ ⎛ ++≥⎟⎠ ⎞⎜⎝ ⎛ −⎟⎠ ⎞⎜⎝ ⎛ ++=⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + 32 cos2 2 cos 32 cos2 3 cos 3 cos ππππ BABABABA . Có dạng ⎟⎠ ⎞⎜⎝ ⎛ +≥+ 2 2)()( BAfBfAf . ⇒ 2 3 3 2cos3) 3 (3)()()( 3 cos 3 cos 3 cos −==++≥++=⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ + ππππ CBAfCfBfAfCBA . Đẳng thức xảy ra khi và chỉ khi tam giác ABC đều. Cách 3.Đưa về tổng bình phương ,hoặc tam thức bậc hai. Ví dụ 13. Cho a,b,c là ba số không âm thoảđiều kiện : a + b + c = 3. Tìm giá trị nhỏ nhất của (a3 + b3 + c3 ). HD: aa 3113 ≥++ Ví dụ 14.Cho x,y,z là ba số dương thoả mãn điều kiện : x.y.z = 1. Chứng minh rằng : ++++ z y y x 11 22 2 3 1 2 ≥+ x z . HD : . 4 1 1 2 xx x z ≥+++ Ví dụ 15. Cho các số thực dương x,y,z thỏa điều kiện : 6≥++ zyx . Tìm giá trị nhỏ nhất của biểu thức : yx z zx y zy xS +++++= 333 HD: Cách 1. Áp dụng xzy zy x 32 2 3 ≥++++ Cách 2: . 2333 )()( zyxyxzxzyS ++≥+++++ Ví dụ 16. Cho các số thực dương a,b,c thỏa mãn điều kiện a2 + b2 + c2 . 12≤ Tìm giá trị nhỏ nhất của biểu thức: ababab P +++++= 1 1 1 1 1 1 . HD :Áp dụng 5 2 25 1 1 1 ≥+++ ab ab (1) .Đẳng thức xảy ra khi ab = 4 Tương tự 5 2 25 1 1 1 ≥+++ bc bc (2) ; 5 2 25 1 1 1 ≥+++ ca ca (3) Lấy (1) + (2) + (3) ta có 5 6 2525 3 5 6 25 1 25 1 25 1 ≥++++⇔≥++++++ cabcabPcabcabP 5 3 5 6 25 12 25 3 5 6 2525 3 222 ≥⇒≥++⇔≥++++⇔ PPcbaP Đẳng thức xảy ra khi a = b = c = 2. Ví dụ 17. Cho a,b,c là ba số dương thỏa mãn : . 4 3=++ cba Chứng minh rằng : 3333 333 ≤+++++ accbba HD : Ta có 3 11333 +++≤+ baba Ví dụ 18. Cho x,y,z là ba số thỏa x + y + z = 0 . Chứng minh rằng : 6434343 ≥+++++ zyx HD:Cách 1.Ta có 84 424.1.1.1443 xxx =≥+ Cách 2 Dùng phương pháp vectơ. Thí dụ 19. Cho x,y,z các số dương thỏa mãn 4111 =++ zyx . Tìm giá trị lớn nhất của biểu thưcù:S= zyxzyxzyx ++++++++ 2 1 2 1 2 1 HD. zyxzyxxzyx ++≥+++=++ 2 161111112 Ví dụ 20. Chứng minh rằng với mọi x,y > 0 ta có: .256)91)(1)(1( 2 ≥+++ yx yx HD : 4 3 6 2 4 3 319)91( )( 274)3331( yyyyyy ≥+⇒≥+++ . 4 3 3 29 4 333 11 x y x y x y x y x y ≥+++=+ ; 1+x = . 3 4 333 1 3 3xxxx ≥+++ Ví dụ 21. Giả sử x,y là hai số dương thay đổi thỏa mãn điều kiện 4 5=+ yx . Tìm giá trị nhỏ nhất của biểu thức : . 4 14 yx S += HD: Cách 1 . Thay xy −= 4 5 4 50; 45 14 <<−+=⇒ xxxS . +Ta sử dụng khảo sát hàm số. +Hoặc 5 5 25 45 1 4 16 45 14 =≥−+=−+= xxxxS . Cách 2 : Bất đẳng thức Côsi : 5 )(4 25 4 5.5 4 1.5 4 14 5 4 =+=++++≥≥+= yxyxxxxyxyxS . Ví dụ 22. Tìm giá trị nhỏ nhất của biểu thức : a c c b b a ++ . trong đó các số dương a,b,c thỏa mãn điều kiện :a+b+c 3 . ≥ HD. Đặt b ac a cb c ba a c c b b aA a c c b b aA 222 222 2 +++++=⇒++= Aùp dụng bất đẳng thức Co-si cho bốn số dương ta được ac c ba c ba b a 4 2 ≥+++ ; ba a cb a cb c b 4 2 ≥+++ ; cb b ac b ac a c 4 2 ≥+++ Cộng từng vế suy ra . 3≥A Ví dụ 23. Cho ba số thực dương a,b,c thoả mãn điều kiện: a2 + b2 + c2 = 1 . Tìm giá trị nhỏ nhất của biểu thức : c ab b ac a bcS ++= . HD. )(2)()()( 2222222 cba c ab b ac a bcS +++++= .Ta có 222 )()( c b ac a bc ≥+ Ví dụ 24. Cho ba số thực dương x,y,z thỏa mãn điều kiện: .1.2 =+ xzxy Tìm giá trị nhỏ nhất của biểu thức: .543 z xy y zx x yzS ++= HD.Ta có ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ++⎟⎠ ⎞⎜⎝ ⎛ ++⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +=++= z xy y zx z xy x yz y zx x yz z xy y zx x yzS 32543 .42(484)(4)(2642 =+=+≥+++=++≥ xyxzxyxzyxzxxyz Đẳng thức xảy ra khi và chỉ khi . 3 1=== zyx Ví dụ 25 .Cho A,B,C là ba góc của một tam giác bất kỳ . Tìm giá trị nhỏ nhất: S=5cotg2A + 16cotg2B +27cotg2C. HD.Sử dụng bất đẳng thức Cauchy ,và bất đẳng thức thường dùng trong tam giác Ví dụ 26. Chứng minh rằng 512 729111111 333 ≥⎟⎠ ⎞⎜⎝ ⎛ +⎟⎠ ⎞⎜⎝ ⎛ +⎟⎠ ⎞⎜⎝ ⎛ + cba . trong đó a,b,c là các số thực dương thỏa mãn a + b + c = 6. HD .Nhân vế trái ,áp dụng bất đẳng thức cho ba biểu thức , áp dụng hằng đăngt thức bậc ba C.Các bài tập đưa về giá tị lớn nhất,giá trị nhỏ nhất. Bài 1.Cho elíp (E) có phương trình .1 916 22 =+ yx Xét điểm M chuyển động trên tia Ox và điểm N chuyển động trên tia Oy sao cho đường thẳng MN luôn luôn tiếp xúc với (E) . Xác dịnh tọa độ M,N để đoạn MN có độ dài nhỏ nhất .Tính giá trị nhỏ nhất đó . Bài 2.Trong mặt phẳng với hệ trục toạ độ Oxy,cho elíp có phương trình 4x2 + 3y2 – 12 = 0.Tìm điểm trên elíp sao cho tiếp tuyến của elíp tại điểm đó cùng với các trục toạ độ tạo thành một tam giác có diện tích nhỏ nhất. Bài 3.Trong mặt phẳng Oxy cho Parabol (P) y2 = 2x và đường thẳng (d) x – y + 2 = 0. Tìm điểm M thuộc (P) sao cho khoảng cách giữa M và (d) ngắn nhất . Bài 4..Trong mặt phẳng Oxy xét đường thẳng (d) : 0212 =−++ myx và hai đường tròn : (C1) : x2 + y2 -2x +4y -4 = 0 . và (C2) : x2 + y2 + 4x - 4y -56 = 0. Gọi I là tâm đường tròn (C1). Tìm m sao cho (d) cắt (C1) tại hai điểm phân biệt A và B . Với giá trị nào của m thì diện tích tam giác IAB lớn nhất và tính giá trị lớn nhất đó? Bài 5.Cho các số thực x,y thỏa mãn điều kiện : .024222 ≤+−++ zxzyx Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F = 2x + 3y – 2z Bài 6.Trong kg Oxyz cho hai đường thẳng (d1) ; (d⎩⎨ ⎧ =− =−+ 03 042 z yx 2) ⎩⎨ ⎧ =− =+ 01 0 x zy Lập phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với hai đường thẳng (d1) và (d2). Bài 7.Cho tứ diện ABCD với A(2;3;2) ; B(6;-1;-2); C(-1;-4;3) ;D(1;6;-5). Tìm tọa độ điểm M thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất Bài 8.Trong mặt phẳng Oxy cho đường thẳng (d): x – 2y – 2 = 0 và hai điểm A (0 ; 1 )B (3 ; 4). Tìm tọa độï điểm M trên (d) sao cho 2MA2 + MB2 có giá trị nhỏ nhất . Bài 9.Trong mặt phẳng với hệ trục toạ độ Oxy,cho các điểm A(1;
File đính kèm:
- PP-Tim-GTLN-GTNN.pdf