20 Đề thi HSG Toán lớp 8 có đáp án

Câu 4: (6,0 điểm)

 Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Gọi H và K lần lượt là hình chiếu của C xuống đường thẳng AB và AD.

a) Tứ giác BEDF là hình gì ? Hãy chứng minh điều đó ?

b) Chứng minh rằng : CH.CD = CB.CK

c) Chứng minh rằng : AB.AH + AD.AK = AC2.

HƯỚNG DẪN CHẤM THI

 

doc41 trang | Chia sẻ: lethuong715 | Lượt xem: 793 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu 20 Đề thi HSG Toán lớp 8 có đáp án, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 phân số cần tìm là x+11. Phân số cần tìm là (x là số nguyên khác -11)
0,5đ
Khi bớt tử số đi 7 đơn vị và tăng mẫu số 4 đơn vị ta được phân số 
(x khác -15)
0,5đ
Theo bài ra ta có phương trình =
0,5đ
Giải phương trình và tìm được x= -5 (thoả mãn)
1đ
Từ đó tìm được phân số 
0,5đ
Bài 4 (2 điểm)
Biến đổi để có A=
0,5đ
=
0,5đ
Vì và nên do đó 
0,5đ
Dấu = xảy ra khi và chỉ khi 
0,25đ
KL
0,25đ
Bài 5 (3 điểm)
a,(1 điểm)
Chứng minh được tứ giác AMNI là hình thang
0,5đ
Chứng minh được AN=MI, từ đó suy ra tứ giác AMNI là hình thang cân
0,5đ
b,(2điểm)
Tính được AD = ; BD = 2AD = 
AM = 
0,5đ
Tính được NI = AM = 
0,5đ
DC = BC = , MN = 
0,5đ
Tính được AI = 
0,5đ
Bài 6 (5 điểm)
a, (1,5 điểm)
Lập luận để có , 
0,5đ
Lập luận để có 
0,5đ
 OM = ON
0,5đ
b, (1,5 điểm)
Xét để có (1), xét để có (2)
Từ (1) và (2) OM.()
0,5đ
Chứng minh tương tự ON. 
0,5đ
từ đó có (OM + ON). 
0,5đ
b, (2 điểm)
, 
0,5đ
Chứng minh được 
0,5đ
Thay số để có 20082.20092 = (SAOD)2 SAOD = 2008.2009
0,5đ
Do đó SABCD= 20082 + 2.2008.2009 + 20092 = (2008 + 2009)2 = 40172 (đơn vị DT)
0,5đ
ĐỀ SỐ 8
Bài 1:
Cho x = ; y = 
Tính giá trị P = x + y + xy
Bài 2:
Giải phương trình:
a, = ++ (x là ẩn số)
b, + + = 0
(a,b,c là hằng số và đôi một khác nhau)
Bài 3:
Xác định các số a, b biết:
 = +
Bài 4: Chứng minh phương trình:
2x2 – 4y = 10 không có nghiệm nguyên.
Bài 5:
Cho ABC; AB = 3AC
Tính tỷ số đường cao xuất phát từ B và C
ĐỀ SỐ 9
Bài 1: (2 điểm)
Cho biểu thức:
a/ Thu gọn A
b/ Tìm các giá trị của x để A<1
c/ Tìm các giá trị nguyên của x để Acó giá trị nguyên
Bài 2: (2 điểm)
a/ Phân tích đa thức sau thành nhân tử ( với hệ số là các số nguyên):
 x2 + 2xy + 7x + 7y + y2 + 10
b/ Biết xy = 11 và x2y + xy2 + x + y = 2010. Hãy tính x2 + y2
Bài 3 (1,5 điểm):
Cho đa thức P(x) = x2+bx+c, trong đó b và c là các số nguyên. Biết rằng đa thức 
x4 + 6x2+25 và 3x4+4x2+28x+5 đều chia hết cho P(x). Tính P(1)
Bài 4 (3,5 điểm):
Cho hình chữ nhật có AB= 2AD, gọi E, I lần lượt là trung điểm của AB và CD. Nối D với E. Vẽ tia Dx vuông góc với DE, tia Dx cắt tia đối của tia CB tại M.Trên tia đối của tia CE lấy điểm K sao cho DM = EK. Gọi G là giao điểm của DK và EM.
a/ Tính số đo góc DBK.
b/ Gọi F là chân đường vuông góc hạ từ K xuống BM. Chứng minh bốn điểm A, I, G, H cùng nằm trên một đường thẳng.
Bài 5 (1 điểm):
Chứng minh rằng: Nếu ba số tự nhiên m, m+k, m+ 2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6.
ĐỀ SỐ 10
Bài 1: (3 điểm)
Cho biểu thức 
a) Rút gọn A.
b) Tìm x để A < -1.
c) Với giá trị nào của x thì A nhận giá trị nguyên.
Bài 2: (2 điểm) Giải phương trình:
a) 
b) 
Bài 3: (2 điểm)
 Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B. Khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ và vận tốc theo thứ tự là 15 km/h; 35 km/h và 55 km/h. 
Hỏi lúc mấy giờ ô tô cách đều xe đạp và xe đạp và xe máy?
Bài 4: (2 điểm) 
 Cho hình chữ nhật ABCD từ điểm P thuộc đường chéo AC ta dựng hình chữ nhật AMPN ( M Î AB và N ÎAD). Chứng minh:
a) BD // MN.
b) BD và MN cắt nhau tại K nằm trên AC.
Bài 5: (1 điểm)
 Cho a = 111 (2n chữ số 1), b = 444 (n chữ số 4).
 Chứng minh rằng: a + b + 1 là số chính phương.
ĐỀ SỐ 11
Bài 1: (2điểm)
a) Cho .Tính 
b) Nếu a, b, c là các số dương đôi một khác nhau thì giá trị của đa thức sau là số dương: 
Bài 2: (2 điểm)
Chứng minh rằng nếu a + b + c = 0 thì:
Bài 3: (2 điểm) 
 Một ô tô phải đi quãng đường AB dài 60 km trong thời gian nhất định. Nửa quãng đường đầu đi với vận tốc lớn hơn vận tốc dự định là 10km/h. Nửa quãng đường sau đi với vận tốc kém hơn vận tốc dự định là 6 km/h. 
Tính thời gian ô tô đi trên quãng đường AB biết người đó đến B đúng giờ.
Bài 4: (3 điểm)
Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC
Bài 5: (1 điểm)
 Tìm nghiệm nguyên của phương trình: 
ĐỀ SỐ 12
Bài 1:
Phân tích thành nhân tử:
a, (x2 – x +2)2 + (x-2)2
b, 6x5 +15x4 + 20x3 +15x2 + 6x +1
Bài 2:
a, Cho a, b, c thoả mãn: a+b+c = 0 và a2 + b2 + c2= 14.
Tính giá trị của A = a4+ b4+ c4
b, Cho a, b, c 0. Tính giá trị của D = x2011 + y2011 + z2011
Biết x,y,z thoả mãn: = ++
Bài 3: 
a, Cho a,b > 0, CMR: + 
b, Cho a,b,c,d > 0
CMR: +++ 0
Bài 4: 
a, Tìm giá trị lớn nhất: E = với x,y > 0
b, Tìm giá trị lớn nhất: M = với x > 0
Bài 5: 
a, Tìm nghiệm Z của PT: xy – 4x = 35 – 5y
b, Tìm nghiệm Z của PT: x2 + x + 6 = y2
Bài 6: 
Cho M là một điểm miền trong của . D, E, F là trung điểm AB, AC, BC; A’, B’, C’ là điểm đối xứng của M qua F, E, D.
a, CMR: AB’A’B là hình bình hành.
b, CMR: CC’ đi qua trung điểm của AA’
ĐỀ SỐ 13
Bài 1: (2 điểm)
a) Phân tích đa thức sau thành nhân tử:
b) Cho a, b, c khác nhau, khác 0 và 
Rút gọn biểu thức: 
Bài 2: (2điểm)
a) Tìm giá trị nhỏ nhất của biểu thức:
b) Giải phương trình: 
Bài 3: (2điểm)
 Một người đi xe máy từ A đến B với vận tốc 40 km/h. Sau khi đi được 15 phút, người đó gặp một ô tô, từ B đến với vận tốc 50 km/h. ô tô đến A nghỉ 15 phút rồi trở lại B và gặp người đi xe máy tại một một địa điểm cách B 20 km. 
Tính quãng đường AB.
Bài 4: (3điểm)
 Cho hình vuông ABCD. M là một điểm trên đường chéo BD. Kẻ ME và MF vuông góc với AB và AD.
a) Chứng minh hai đoạn thẳng DE và CF bằng nhau và vuông góc với nhau.
b) Chứng minh ba đường thẳng DE, BF và CM đồng quy.
c) Xác định vị trí của điểm M để tứ giác AEMF có diện tích lớn nhất.
Bài 5: (1điểm)
 Tìm nghiệm nguyên của phương trình:
§Ề SỐ 14
Bài 1: (2,5điểm)
Phân tích đa thức thành nhân tử
a) x5 + x +1
b) x4 + 4
c) x- 3x + 4-2 với x > 0
Bài 2 : (1,5điểm)
Cho abc = 2 Rút gọn biểu thức: 
Bài 3: (2điểm)
Cho 4a2 + b2 = 5ab và 2a > b > 0
Tính: 
Bài 4 : (3điểm)
 Cho tam giác ABC cân tại A. Trên BC lấy M bất kì sao cho BM < CM. Từ N vẽ đường thẳng song song với AC cắt AB tại E và song song với AB cắt AC tại F. Gọi N là điểm đối xứng của M qua E F.
a) Tính chu vi tứ giác AEMF. Biết : AB =7cm
Chứng minh : AFEN là hình thang cân
c) Tính : ANB + ACB = ?
M ở vị trí nào để tứ giác AEMF là hình thoi và cần thêm điều kiện của D ABC
để cho AEMF là hình vuông. 
Bài 5: (1điểm)
Chứng minh rằng với mọi số nguyên n thì :
 52n+1 + 2n+4 + 2n+1 chia hết cho 23.
§Ò SỐ 15
Bài 1: (2 điểm)
a) Phân tích thành thừa số: 
b) Rút gọn: 
Bài 2: (2 điểm)
Chứng minh rằng: chia hết cho 5040 với mọi số tự nhiên n.
Bài 3: (2 điểm)
a) Cho ba máy bơm A, B, C hút nước trên giếng. Nếu làm một mình thì máy bơm A hút hết nước trong 12 giờ, máy bơm B hút hếtnước trong 15 giờ và máy bơm C hút hết nước trong 20 giờ. Trong 3 giờ đầu hai máy bơm A và C cùng làm việc sau đó mới dùng đến máy bơm B. 
Tính xem trong bao lâu thì giếng sẽ hết nước.
b) Giải phương trình: (a là hằng số).
Bài 4: (3 điểm)
Cho tam giác ABC vuông tại C (CA > CB), một điểm I trên cạnh AB. Trên nửa mặt phẳng bờ AB có chứa điểm C người ta kẻ các tia Ax, By vuông góc với AB. Đường thẳng vuông góc với IC kẻ qua C cắt Ax, By lần lượt tại các điểm M, N.
a) Chứng minh: tam giác CAI đồng dạng với tam giác CBN.
b) So sánh hai tam giác ABC và INC.
c) Chứng minh: góc MIN = 900.
d) Tìm vị trí điểm I sao cho diện tích ∆IMN lớn gấp đôi diện tích ∆ABC.
Bài 5: (1 điểm) 
Chứng minh rằng số:
 là số chính phương. ().
Đề SỐ 16:
Câu 1 : ( 2 ñieåm ) Phân tích biểu thức sau ra thừa số
M = 3 xyz + x ( y2 + z2 ) + y ( x2 + z2 ) + z ( x2 + y2 )
Câu 2 : ( 4 ñieåm ) Định a và b để đa thức A = x4 – 6 x3 + ax2 + bx + 1 là bình phương của một đa thức khác .
Câu 3 : ( 4 ñieåm ) Cho biểu thức : 
P = 
a) Rút gọn p .
b) Tính giá trị của biểu thức p khi /x / = 
c) Với giá trị nào của x thì p = 7
d) Tìm giá trị nguyên của x để p có giá trị nguyên .
Câu 4 : ( 3 ñieåm ) Cho a , b , c thỏa mãn điều kiện a2 + b2 + c2 = 1
Chứng minh : abc + 2 ( 1 + a + b + c + ab + ac + bc ) ≥ 0
Câu 5 : ( 3ñieåm) 
Qua trọng tâm G tam giác ABC , kẻ đường thẳng song song với AC , cắt AB và BC lần lượt tại M và N . Tính độ dài MN , biết AM + NC = 16 (cm) ; Chu vi tam giác ABC bằng 75 (cm)
Câu 6 : ( 4 ñieåm ) Cho tam giác đều ABC . M, N là các điểm lần lượt chuyển động trên hai cạnh BC và AC sao cho BM = CN xác định vị trí của M , N để độ dài đoạn thẳng MN nhỏ nhất .
®Ò SỐ 17
Bµi 1: (2 ®iÓm) 
Ph©n tÝch ®a thøc sau ®©y thµnh nh©n tö:
Bµi 2: (2®iÓm) Gi¶i phư¬ng tr×nh: 
Bµi 3: (2®iÓm) 1. CMR víi a,b,c,lµ c¸c sè d¬ng ,ta cã: (a+b+c)(
T×m sè d trong phÐp chia cña biÓu thøc cho ®a thøc .
Bµi 4: (4 ®iÓm)Cho tam gi¸c ABC vu«ng t¹i A (AC > AB), ®êng cao AH (HBC). Trªn tia HC lÊy ®iÓm D sao cho HD = HA. §êng vu«ng gãc víi BC t¹i D c¾t AC t¹i E.
Chøng minh r»ng hai tam gi¸c BEC vµ ADC ®ång d¹ng. TÝnh ®é dµi ®o¹n BE theo .
Gäi M lµ trung ®iÓm cña ®o¹n BE. Chøng minh r»ng hai tam gi¸c BHM vµ BEC ®ång d¹ng. TÝnh sè ®o cña gãc AHM
Tia AM c¾t BC t¹i G. Chøng minh: .
Bµi 1
C©u
Néi dung
§iÓm
1.
2,0
1.1
(0,75 ®iÓm)
0.5
0,5
1.2
(1,25 ®iÓm)
0,25
0,25
0,25
2.
2,0
2.1
 (1)
+ NÕu : (1) (tháa m·n ®iÒu kiÖn ).
+ NÕu : (1) 
 (c¶ hai ®Òu kh«ng bÐ h¬n 1, nªn bÞ lo¹i)
VËy: Ph¬ng tr×nh (1) cã mét nghiÖm duy nhÊt lµ .
0,5
0,5
2.2
 (2)
§iÒu kiÖn ®Ó ph¬ng tr×nh cã nghiÖm: 
 (2)
 vµ .
VËy ph¬ng tr×nh ®· cho cã mét nghiÖm 
0,25
0,5
0,25
3
2.0
3.1
Ta cã:
A=
 =
Mµ: (B§T C«-Si)
Do ®ã A VËy A
0,5
0,5
3.2
Ta cã: 
§Æt , biÓu thøc P(x) ®îc viÕt l¹i:
Do ®ã khi chia cho t ta cã sè d lµ 1993
0,5
0,5
4
4,0
4.1
+ Hai tam gi¸c ADC vµ BEC cã: 
 Gãc C chung. 
 (Hai tam gi¸c vu«ng CDE vµ CAB ®ång d¹ng)
 Do ®ã, chóng dång d¹ng (c.g.c). 
Suy ra: (v× tam gi¸c AHD vu«ng c©n t¹i H theo gi¶ thiÕt).
Nªn do ®ã tam gi¸c ABE vu«ng c©n t¹i A. Suy ra: 
1,0
0,5
4.2
Ta cã: (do )
mµ (tam gi¸c AHD vu«ng v©n t¹i H)
nªn (do )
Do ®ã (c.g.c), suy ra: 
0,5
0,5
0,5
4.3
Tam gi¸c ABE vu«ng c©n t¹i A, nªn tia AM cßn lµ ph©n gi¸c gãc BAC.
S

File đính kèm:

  • docTUYEN TAP DE THI HSG TOAN 8 CO DAP AN RAT HAY.doc
Giáo án liên quan