100 bài toán ôn luyện đại học (theo chương trình mới) - Chủ đề hình học không gian

Bài 21: Chứng minh rằng tổng các khoảng cách từ 1 điểm trong bất kỳcủa 1 tứ diện đều đến các mặt của nó là 1 số không đổi .

 Bài 22: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB =a,BC =2a ,AA’ =a.Lấy điểm M trên cạnh AD sao cho AM =3MD.

 1/Tính V khối chóp M.AB’C

 2/Tính khoảng cách từMđến mp(AB’C) .

 

doc10 trang | Chia sẻ: tuananh27 | Lượt xem: 605 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu 100 bài toán ôn luyện đại học (theo chương trình mới) - Chủ đề hình học không gian, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
đoạn thẳng AB và CD chéo nhau ,AC là đường vuông góc chung của chúng .Biết rằng AC=h, AB =a, CD =b và góc giữa 2 đường thẳng AB và CD bằng .Tính V tứ diện ABCD.
ŸBài 25: Cho tứ diện đều ABCD.Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó .Tính tỉ số .
ŸBài 26: Tính V khối tứ diện đều cạnh a.
ŸBài 27: Tính V khối bát diện đều cạnh a.
ŸBài 28: Cho hình hộp ABCD.A’B’C’D’ .Tính tỉ số V khói hộp đó và V khối tứ diện ACB’D’.
ŸBài 29: Cho hình chóp S.ABC.Trên các đoạn thẳng SA,SB,SC lần lượt lấy 3 điểm A’, B’, C’ khác với S .C/m :
 ŸBài 30: Cho hình chóp tam giác đều S.ABC có AB=a .Các cạnh bên SA,SB,SC tạo với đáy một góc .Tính V khối chóp đó .
 ŸBài 31: Cho hình chóp tam giác S.ABC có AB=5a ,BC=6a ,CA=7a.Các mặt bên SAB,SBC,SCA tạo với đáy một góc . Tính V khối chóp đó .
 ŸBài 32: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ,SA vuông góc với đáy và AB=a ,AD=b, SA =c.Lấy các điểm B’,D’ theo thứ tự thuộc SB,SD sao cho .Mặt phẳng (AB’D’) cắt SC tại C’.Tính V khối chóp đó .
ŸBài 33: Cho hình chóp tứ giác đều S.ABCD ,đáy là hình vuông cạnh a ,cạnh bên 
tạo với đáy một góc . Gọi M là trung điểm SC.Mặt phẳng đi qua AM và song song với BD ,cắt SB tại E và cắt SD tại F.Tính V khối chóp S.AEMF.
ŸBài 34: Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a.
 1/	Tính V khối tứ diện A’BB’C.
 2/Mặt phẳng đi qua A’B’ và trọng tâm , cắt AC và BC lần lượt tại E và F.Tính V khối chóp C.A’B’FE.
ŸBài 35: Cho hình lập phương ABCD.A’B’C’D’.cạnh a .Gọi M là trung điểm của A’B’,N là trung điểm của BC.
 1/Tính V khối tứ diện ADMN.
 2/Mặt phẳng (DMN) chia khối lập phương đã cho thành 2 khối đa diện .Gọi (H) là khối đa diện chứa đỉnh A,(H’) là khối đa diện còn lại .Tính tỉ số 
ŸBài 36: Cho khối chóp S.ABC có đường cao SA =a ,đáy là tam giác vuông cân có AB =BC =a. Gọi B’ là trung điểm của SB ,C’ là chân đường cao hạ từ A của .
 1/ Tính V khối chóp S.ABC.
 2/C/m : .
 3/Tính V khối chóp S.AB’C’.
ŸBài 37: Cho khối chóp S.ABC có đường cao SA = 2a , vuông ở C có AB=2a, .Gọi H,K lần lượt là hình chiếu của A trên SC và SB .
 1/ Tính V khối chóp H.ABC.
 2/C/m : và .
 3/ Tính V khối chóp S.AHK.
ŸBài 38: Cho hình lăng trụ đứng ABC.A’B’C’ có mặt đáy là tam giác ABC vuông tại B và AB=a ,BC =2a ,AA’=3a .Một mp(P) đi qua A và vuông góc với CA’ lần lượt cắt các đoạn thẳng CC’ và BB’ tại M và N .
 1/ Tính V khối chóp C.A’AB.
 2/C/m :.
 3/Tính V khối tứ diện A’AMN.
 4/Tính .
ŸBài 39: Cho lăng trụ ABC.A’B’C’ có độ dài cạnh bên bằng 2a ,đáy ABC là tam giác vuông tại A, AB =a, và hình chiếu vuông góc của đỉnh A’ trên mp(ABC) là trung điểm của cạnh BC.Tính theo a thể tích khối chóp A’.ABC và tính cosin của góc giữa 2 đường thẳng AA’,B’C’.
ŸBài 40: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a ,SA=a , và mp(SAB) vuông góc với mặt phẳng đáy.Gọi M,N lần lượt là trung điểm của các cạnh AB,BC .Tính theo a thể tích khối chóp S.BMDNvà tính cosin của góc giữa 2 đường thẳng SM,DN.
ŸBài 41:Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông ,AB=BC=a, cạnh bên .Gọi M là trung điểm của cạnh BC.Tính theo a thể tích khối lăng trụ ABC.A’B’C’ và khoảng cách giữa 2 đường thẳng AM,B’C.
ŸBài 42:Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a ,mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy.Gọi M,N,P lần lượt là trung điểm của các cạnh SB,BC,CD.C/m : và V khối tứ diện CMNP.
ŸBài 43:Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a .Gọi E là điểm đối xứng của D qua trung điểm của SA, M là trung điểm của AE ,N là trung điểm của BC. C/m : và tính khoảng cách giữa 2 đường thẳng MN và AC.
ŸBài 44:Cho hình chóp S.ABCD có đáy là hình thang ,, BA=BC=a ,AD =2a.Cạnh bên SA vuông góc với đáy và .Gọi H là hình chiếu vuông góc của A trên SB. C/m vuông và tính .
ŸBài 45:Cho hình trụ có các đáy là 2 hình tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng a .Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm B sao cho AB = 2a .Tính V khối tứ diện OO’AB.
ŸBài 46:Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a , ,SA= a và .Gọi M,N lần lượt là trung điểm của AD và SC .I là giao điểm của BM và AC . 
 1/Cmr: 
 2/Tính V khối tứ diện ANIB.
ŸBài 47:Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA =2a và .Gọi M,N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC .Tính V khối chóp A.BCMN.
ŸBài 48: Cho hình lăng trụ lục giác đều ABCDE.A’B’C’D’E’ cạnh bên l, mặt chéo đi qua 2 cạnh đáy đối diện nhau hợp với đáy 1 góc .Tính V lăng trụ.
ŸBài 49: Cạnh đáy của 1 hình chóp tam giác đều bằng a; mặt bên của hình chóp tạo với mặt đáy 1 góc .Tính V khối chóp .
ŸBài 50: Cho 1 hình hộp chữ nhật ABCD.A’B’C’D’ có đường chéo B’D=a tạo thành với mặt phẳng đáy ABCD 1 góc bằng và tạo thành với mặt bên AA’D’D 1 góc bằng .Tính V của hình hộp chữ nhật trên.
 ŸBài 51: Đường sinh của 1 hình nón có độ dài bằng a và tạo thành với đáy 1 góc .
Tính diện tích xung quanh và thể tích hình nón .
ŸBài 52: Cho hình chóp S.ABC có đáy là tam giác vuông cân ,cạnh huyền BC = a .Mặt bên SBC tạo với đáy góc .Hai mặt bên còn lại vuông góc với đáy .
 1/C/m SA là đường cao của hình chóp .
 2/Tính V khối chóp .
ŸBài 53: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy là 1 hình vuông và chiều cao bằng h .Góc giữa đường chéo và mặt đáy của hình hộp chữ nhật đó bằng .Tính và V của hình hộp đó.
ŸBài 54: Cho hình chóp tam giác S.ABC .Hai mặt bên SAB và SBC của hình chóp cùng vuông góc với đáy ,mặt bên còn lại tạo với đáy 1 góc .Đáy ABC của hình chóp có , , cạnh BC =a. Tính và V của hình chóp.
ŸBài 55: Đáy của hình lăng trụ đứng ABC.A’B’C’ là 1 tam giác cân có AB=AC =a và . Góc giữa mặt phẳng đi qua 3 đỉnh A’,B,C và mặt đáy( ABC) bằng .
Tính và V của hình lăng trụ đó .
ŸBài 56: Cho lăng trụ tam giác đều ABC.A’B’C’có cạnh đáy bằng a và 1 điểm D trên cạnh BB’.Mặt phẳng qua các điểm D,A,C tạo với mặt đáy (ABC) 1 góc và mp qua các điểm DA’C’ tạo với mặt đáy A’B’C’ 1 góc .Tính V lăng trụ .
ŸBài 57: Cho hình nón tròn xoay đỉnh S .Trong đáy của hình nón đó có hình vuông ABCD nội tiếp , cạnh bằng a .Biết rằng = 2 .
 Tính V và của hình nón .
ŸBài 58: Cho lăng trụ đứng ABC.A’B’C’ .Đáy ABC là tam giác cân có AB=AC =.Đường chéo của mặt BB’C’C bằng d và tạo với mặt đáy góc . 
 Tính và V của hình lăng trụ đó .
ŸBài 59: Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A với
 AC =a và .Đường chéo BC của mặt bên (BCC’B’) hợp với mặt bên (ACC’A’) một góc .Tính V lăng trụ .
 ŸBài 60: Cho hình hộp ABCD.A’B’C’D’ có đáy là hình thoi ABCD cạnh a ,, và chân đường vuông góc hạ từ B’ xuống đáy (ABCD) trùng với giao điểm O các đương chéo của đáy .Cho BB’ =a .Tính V và của hình hộp đó .
ŸBài 61: Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a ; (SAC) vuông góc với đáy ; và SA tạo với đáy 1 góc bằng .Tính V của hình chóp.
ŸBài 62: Cho hình chóp S.ABC có ;SBC là tam giác đều cạnh a và (SAB).Tính V của hình chóp.
ŸBài 63: Cho hình chóp tứ giác đều S.ABCD , có chiều cao h ,góc ở đỉnh của mặt bên bằng 2.Tính và V của hình chóp đó .
ŸBài 64: Cho hình chóp S.ABC có các mặt bên đều là tam giác vuông đỉnh S và SA=SB=SC =a .Tính .
ŸBài 65: Cho hình chóp S.ABC có đáy là tam giác đều cạnh , đường cao SA=a.Mặt phẳng qua A và vuông góc với SB tại H cắt SC tại K. Tính SK và .
ŸBài 66: Cho hình chóp S.ABCD , đáy là hình bình hành ABCD có diện tích bằng và góc giữa 2 đường chéo bằng .Biết rằng các cạnh bên của hình chóp nghiêng đếu trên mặt đáy 1 góc .
 1/ Chứng tỏ ABCD là hình chữ nhật.
 2/ Tính V của hình chóp đó .
ŸBài 67: Cho hình chóp S.ABCD , đáy là hình thang vuông ABCD vuông tại A và B ,AB=BC=2a ; đường cao của hình chóp là SA =2a .
 1/ Xác định và tính đoạn vuông góc chung của AD và SC .
 2/ Tính V của hình chóp đó .
ŸBài 68: Cho hình chóp S.ABCD có cạnh SA =x ,còn tất cả các cạnh khác có độ dài bằng 1.
 1/C/m: 
 2/Tính V của hình chóp đó .
ŸBài 69: Cho hình chóp S.ABCD .Đáy ABCD là nửa lục giác đều với AB=BC=CD=a và AD= 2a .Hai mặt bên SAB và SAD vuông góc với đáy ,mp(SBD) tạo với mp chứa đáy 1 góc .
 1/Tính V của hình chóp đó .
 2/Tính .
ŸBài 70: Cho tứ diện ABCD có AB=a ,BC =b, BD =c, , .Tính V của tứ diện đó . 
ŸBài 71: Cho hình lăng trụ tam giác ABC.A’B’C’,trong đó ABC là tam giác đều cạnh c, A’H vuông góc với mp(ABC).(H là trực tâm của tam giác ABC ), cạnh bên AA’ tạo với mp(ABC) 1 góc .
 1/C/mr: AA’
 2/Tính V của khối lăng trụ .
ŸBài 72: Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a.
 1/Tính V của hình chóp S.ABCD .
 2/Tính khoảng cách từ tâm mặt đáy ABCD đến các mặt bên của hình chóp.
ŸBài 73: Cho hình chóp tam giác đều S.ABC, có đường cao SO =1 và đáy ABC có cạnh bằng .Điểm M,N là trung điểm của cạnh AB,AC tương ứng .Tính V của hình chóp S.AMN và bán kính hình cầu nội tiếp hình chóp đó.
ŸBài 74: Trong

File đính kèm:

  • docGui class 11a1 hoc tot nha de thi dai hoc hinh hoc.doc