10 Đề ôn tập học kì 2 môn Toán lớp 12

Câu III: (1,0 điểm):Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, cạnh SA vuông góc với đáy, góc ABC bằng , BC = a và SA = . Tính thể tích của khối chóp đó.

B. PHẦN RIÊNG: (3,0 điểm)

I. Dành cho học sinh học chương trình chuẩn:

Câu IVa : (3,0 điểm)

 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [1 ; 3].

2) Cho hình nón có đỉnh S, mặt đáy là hình tròn tâm O, đường kính AB = 2R và tam giác SAB vuông.

 a) Tính thể tích khối nón giới hạn bởi hình nón đó.

b) Giả sử M là một điểm thuộc đường tròn đáy sao cho . Tính diện tích thiết diện của hình nón tạo bởi mặt phẳng (SAM).

 

doc6 trang | Chia sẻ: lethuong715 | Lượt xem: 718 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu 10 Đề ôn tập học kì 2 môn Toán lớp 12, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 một hình nón nội tiếp mặt cầu có bán kính đáy bằng r. Tính diện tích xung quanh hình nón. 
ĐỀ 2 
PHẦN CHUNG:( 7 điểm)
Câu 1(3đ): Cho hàm số : 	(1)
1. Khảo sát và vẽ đồ thị (C) của hàm số (1).
2. Chứng minh rằng đường thẳng d: y = 2x + m luôn cắt đồ thị (C) tại hai điểm M và N phân biệt với mọi m. 
Câu 2(2đ): 1. Giải phương trình: 
 2.Chứng minh rằng: ; với ;.
Câu 3(2đ): Cho hình chóp S.ABC có vuông tại B có , , cạnh bên và . Gọi (P) là mặt phẳng qua A và vuông góc với SC; mặt phẳng (P) cắt SC và SB lần lượt tại D và E.
1. Chứng minh:.
2. Tính thể tích khối chóp S.ADE.
II. PHẦN RIÊNG ( 3 điểm )
A. Học sinh học chương trình chuẩn chọn câu 4a.
Câu 4a :1. ( 1 đ ) Giải phương trình sau: .
2. ( 1 đ ) Giải phương trình: 25x -33.5x +32 = 0.
3. ( 1 đ ). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 – 3x3 – 2x2 + 9x trên .
B. Học sinh học chương trình nâng cao chọn câu 4b.
Câu 4b 
 1. (1 đ) Người ta bỏ năm quả bóng bàn cùng kích thước có bán kính bằng r, vào trong một chiếc hộp hình trụ thẳng đứng, có đáy bằng hình tròn lớn của quả bóng, các quả bóng tiếp xúc nhau và tiếp xúc với mặt trụ còn hai quả bóng nằm trên và dưới thì tiếp xúc với 2 đáy. Tính theo r thể tích khối trụ.
 2. (1đ) Tìm các đường tiệm cận của đồ thị hàm số: .
 3. (1 đ) Giải phương trình: 4x =5-x. 
 ĐỀ 3
I. Phần chung cho tất cả thí sinh (7 điểm): 
C©u I (3 ®iÓm) Cho hµm sè 
1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè 
2. BiÖn luËn theo m số nghiệm của phương trình : 
C©u II (3®iÓm)	
1). Tìm hàm số f(x) biết rằng f ’(x) = 2 – x2 và f(2) = .
2). Tìm tập xác định của hàm số 
3). Giải bất phương trình: 
C©u III (1 ®iÓm) :Rút gọn biểu thức 
II. Phần riêng (3 điểm):(Thí sinh học chương trình nào chỉ được làm phần dành riêng cho chương trình đó).
1. Theo chương trình chuẩn: 
C©u IVa: ( 2 ®iÓm)
Cho khối chóp S.ABCD có đáy là hình thang vuông ở A và B. Cạnh bên SA vuông góc với đáy , SA = AD = 2a và AB = BC a. Tính thể tích khối chópS.ABCD.
Câu Va: (1 điểm ) :Giải phương trình : . 
2. Theo chương trình nâng cao: 
Câu IVb: ( 2 điểm ) : Cho hình chóp S.ABC có SA, AB, BC vuông góc với nhau từng đôi một.Biết SA = a, AB = BC = . 1) Tính thể tích của khối chóp S.ABC.
	 2) Xác định tâm và tính bán kính mặt cầu ngoại tiếp khối chóp S.ABC
Câu Vb: ( 1 điểm ) :Tìm 
ĐỀ 4 
A-PHẦN CHUNG BẮT BUỘC: ( 7 điểm )
Câu 1: (4 điểm) Cho hàm số 
	a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
	b) Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của đồ thị (C) và trục tung .
	c) Tìm m để đường thẳng d có phương trình cắt đồ thị (C) tại hai điểm phân biệt.
Câu 2: (3 điểm) Cho hình chóp S.ABCD, đáy là hình chữ nhật ABCD có , cạnh bên SA vuông góc với mặt đáy (ABCD), cạnh bên SB tạo với mặt đáy (ABCD) một góc bằng . Gọi H là hình chiếu vuông góc của A trên SD.
	a) Chứng minh rằng DC vuông góc với AH.
	b) Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD .
	c) Tính thể tích khối chóp H.ABC .
B-PHẦN DÀNH CHO HỌC SINH TỪNG BAN: ( 3 điểm )
* Học sinh Ban Cơ bản làm các câu 3a, 4a, 5a:
Câu 3a: (1điểm) Giải phương trình: .
Câu 4a: (1điểm) Giải phương trình: .
Câu 5a: (1điểm) Cho tam giác ABC vuông góc tại A, quay quanh cạnh huyền BC. Tính thể tích khối tròn xoay được tạo thành.
* Học sinh Ban Nâng cao làm các câu 3b, 4b, 5b:
Câu 3b: (1điểm) Giải hệ phương trình: 
Câu 4b: (1điểm) Giải phương trình: .
Câu 5b: (1điểm) Hình trụ có bán kính đáy R và trục . Hai điểm A, B lần lượt thuộc hai đường tròn đáy (O) và (O’) sao cho góc giữa AB và trục OO’ bằng . Tính khoảng cách giữa AB và OO’ theo R và . 
ĐỀ 5 
I .PHẦN DÀNH CHUNG CHO CẢ HAI BAN ( 7. 0 điểm )
 Câu 1: (3.0 điểm) : Cho hàm số có đồ thị
a. Khảo sát và vẽ đồ thi .
b.Tìm các điểm trên đồ thị của hàm số có tọa độ là những số nguyên.
c. Chứng minh rằng trên đồ thị không tồn tại điểm nào mà tại đó tiếp tuyến với đồ thị đi qua giao điểm của hai tiệm cận . 
 Câu 2: (2.0 điểm) : Giải các phương trình sau 
a. 22x+1 – 9.2x + 4 = 0
b. 
 Câu 3: (2.0 điểm) : Trong không gian cho tam giác ABC vuông tại A., có cạnh BC = 2a; . Tính diện tích xung quanh của hình nón tròn xoay khi quay đường gấp khúc CBA xung quanh trục là đường thẳng chứa cạnh AB. Tính góc ở đỉnh của hình nón đó.
II. PHẦN DÀNH RIÊNG CHO TỪNG BAN ( 3. 0 điểm ) 
 A. Phần dành riêng cho ban cơ bản:
 Câu 1: (1,50 điểm) : Cho hình chóp S.ABC có đáy là tam giác vuông tại A, BC = 2a ; các cạnh bên SA = SB = SC = . Xác định tâm và tính diện tích mặt cầu ngoại tiếp hình chóp.
 Câu 2: (1,50 điểm) : Cho hàm số . Với giá trị nào của m thì hàm số có cực đại và cực tiểu, đồng thời hoành độ các điểm cực đại và cực tiểu , thỏa mãn điều kiện .
B. Phần dành riêng cho ban KHTN: ( 3. 0 điểm )
 Câu 1: (1,50 điểm) : Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a. SAB là tam giác đều và vuông góc với đáy. Xác định tâm và tính diện tích mặt càu ngoại tiếp hình chóp.
 Câu 2: (1,50 điểm) : Cho hàm số . Tìm tất cả các giá trị của tham số m để hàm số có hai cực trị và hai giá trị này trái dấu
ĐỀ 6 
PHẦN 1: Chung cho tất cả học sinh (7đ)
Câu 1( 3 điểm): Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
Viết phương trình tiếp tuyến với đồ thị (C) tại điểm M(-2;2)
Dựa vào đồ thị (C), tìm m để phương trình có 3 nghiệm phân biệt.
Câu 2 (1điểm): Tìm GTLN,GTNN của hàm số: y= trên đoạn 
Câu 3(2điểm): Giải phương trình:
 a. 52x+5x+1=6	b. 
Câu 4 (1điểm): Biết . Chứng minh:
PHẦN II: Học sinh thuộc ban nào chỉ làm phần dành riêng cho ban đó(3đ)
Ban KHTN:
Câu 5(2điểm): Trên mặt phẳng (P) có góc vuông xOy, đoạn SO=a vuông góc với (P). Các điểm M, N chuyển động trên Ox, Oy sao cho ta luôn có OM+ON=a
Xác định vị trí của M, N để thể tích của tứ diện S.OMN lớn nhất. 
Khi tứ diện S.OMN có thể tích lớn nhất , xác định tâm và tính bán kính mặt cầu ngoại tiếp tứ diện S.OMN.
 	Câu 6(1 điểm): Giải hệ phương trình:
Ban Cơ Bản:
Câu 5(1điểm): Giải phương trình:
Câu 6(2 điểm): Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SB=
Tính thể tích của hình chóp S.ABCD
Xác định tâm, bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD
ĐỀ 7 
I .PHẦN DÀNH CHUNG CHO CẢ HAI BAN ( 7. 0 điểm )
 Câu 1: (3.0 điểm) : Cho hàm số có đồ thị
a. Khảo sát và vẽ đồ thi .
b.Tìm các điểm trên đồ thị của hàm số có tọa độ là những số nguyên.
c. Chứng minh rằng trên đồ thị không tồn tại điểm nào mà tại đó tiếp tuyến với đồ thị đi qua giao điểm của hai tiệm cận . 
 Câu 2: (2.0 điểm) : Giải các phương trình sau 
a. 22x+1 – 9.2x + 4 = 0
b. 
 Câu 3: (2.0 điểm) : Trong không gian cho tam giác ABC vuông tại A., có cạnh BC = 2a; . Tính diện tích xung quanh của hình nón tròn xoay khi quay đường gấp khúc CBA xung quanh trục là đường thẳng chứa cạnh AB. Tính góc ở đỉnh của hình nón đó.
II. PHẦN DÀNH RIÊNG CHO TỪNG BAN ( 3. 0 điểm ) 
 A. Phần dành riêng cho ban cơ bản:
 Câu 1: (1,50 điểm) : Cho hình chóp S.ABC có đáy là tam giác vuông tại A, BC = 2a ; các cạnh bên SA = SB = SC = . Xác định tâm và tính diện tích mặt cầu ngoại tiếp hình chóp.
 Câu 2: (1,50 điểm) : Cho hàm số . Với giá trị nào của m thì hàm số có cực đại và cực tiểu, đồng thời hoành độ các điểm cực đại và cực tiểu , thỏa mãn điều kiện .
B. Phần dành riêng cho ban KHTN: ( 3. 0 điểm )
 Câu 1: (1,50 điểm) : Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a. SAB là tam giác đều và vuông góc với đáy. Xác định tâm và tính diện tích mặt càu ngoại tiếp hình chóp.
 Câu 2: (1,50 điểm) : Cho hàm số . Tìm tất cả các giá trị của tham số m để hàm số có hai cực trị và hai giá trị này trái dấu.
 ĐỀ 8
I. PHẦN CHUNG CHO THÍ SINH CẢ HAI BAN (7,0 điểm) 
 Câu I ( 3 điểm) :Cho hàm số , gọi đồ thị của hàm số là (C) .
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho .
Viết phương trình tiếp tuyến của đồ thị (C) biết rằng tiếp tuyến đi qua điểm M(-3;1) .
 Câu II ( 3 điểm) 
Tính giá trị của biểu thức .
Cho hàm số . Tính .
 Câu III ( 1 điểm) :Cho hình chóp tứ giác đều nội tiếp một hình nón . Hình chóp có tất cả các cạnh đều bằng a . Tính diện tích hình nón và thể tích khối nón trên .
II. PHẦN DÀNH CHO HỌC SINH TỪNG BAN (3,0 điểm)
Thí sinh ban nâng cao 
 Câu IVa ( 1 điểm) :Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 2cosx – cos2x trên đoạn .
 Câu Va ( 2 điểm) :Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B . Cạnh bên SA vuông
 góc với mặt phẳng đáy và SA = a . Cạnh bên SB tạo với mặt phẳng đáy góc 600 .
Tính thể tích khối chóp S.ABC .
Tìm tâm và tính diên tích mặt cầu ngoại tiếp hình chóp S.ABC .
Thí sinh ban cơ bản 
 Câu IVb ( 1 điểm) :Giải các phương trình : 1. 2. 
 Câu Vb (2 điểm) :Một hình nón có thiết diện qua trục là tam giác đều cạnh . Tính diện tích xung 
quanh hình nón và thể tích khối nón trên . 
ĐỀ 9
I. PHẦN CHUNG CHO THÍ SINH CẢ HAI BAN (7,0 điểm) 
 Câu I ( 3 điểm) :Cho hàm số , gọi đồ thị của hàm số là (C) .
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho .
Dựa vào đồ thị (C) , tìm tất cả các giá trị của m để phương trình có 4nghiệm pbiệt .
 Câu II ( 3 điểm) 
Tính giá trị của biểu thức .
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên [0;ln4]
 Câu III ( 1 điểm) :Cho hình trụ có đáy là hình tròn ngoại tiếp hình vuông cạnh a . Diện tích của thiết diện qua trục hình trụ là . Tính diện tích mặt trụ và thể tích khối trụ đã cho .
II. PHẦN DÀNH CHO HỌC SINH TỪNG BAN (3,0 điểm)
Thí sinh ban nâng cao 
 Câu IVa ( 1 điểm) Chứng minh rằng với mọi giá trị của tham số m , hàm số luôn đạt
 cực đại , cực tiểu tại x1 , x2 và = 0 .
 Câu Va ( 2 điểm) 
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a . Cạnh bên của lăng trụ 
hợp với đáy góc 600 . Đỉnh A’ cách đều A,B,C . 
Chứng minh BB’C’C là hình chữ nhật .
Tính thể tích khối lăng trụ ABC.A’B’C’ . 
 B. Thí sinh ban cơ bản 
 Câu IVb ( 1 điểm) 
Giải phương trình :.
Giải phương trình :
 Câu Vb ( 2 điểm) :Cho hình chóp tứ giác đều S.ABCD có cạnh đáy là a . Tam giác SAC là tam giác đều . 
Tính diện tích một mặt bên của hình chóp .
Tính thể tích khối chóp S.ABCD .
ĐỀ 10
I. PHẦN CHUNG 

File đính kèm:

  • doc10 DE ON TAP HKI LOP 12.doc